Bringing Open Source Software
Collaboration to Corporate
Environments

Brian Behlendorf
CTO, CollabNet
Co-Founder, Apache Software Foundation
Board Member, Mozilla Foundation

The corporate software
development disaster

* > 45% of software development projects in
2003 were cancelled; another 30% are
completed late and/or with reduced

features.

* The trend is not in a positive direction -
failure rates have risen the last ten years.

* Source code management practices: reality
often defies expectations (and belief).

Some of the more notorious
examples:

e U.S. Government failures at the IRS and DoD

- “There are very few success stories,” said Paul
Brubaker, former deputy chief information officer
(CIO) at the Pentagon

e AT&T Wireless “Self-Destructs” - CIO
Magazine, Apr 15 2004

- “The story of a botched CRM upgrade that cost
the telco thousands of new customers and an
estimated $100 million in lost revenue. Hard
lessons learned.”

What's behind these failures?

* Slow feedback loops from inception to use.
* High underlying technology churn.

* Poorly documented prior systems and
requirements.

* The growing difficulty in estimating
development effort.

* Demotivated developers due to outsourcing
or lack of development agility.

Developers as “resources”

Myth: developers are often seen as commodity,
like assembly line workers.

Reality: the productivity difference between a
paycheck-driven developer and a motivated,
talents one is modulo two orders of magnitude.
[Brooks]

Corporations usually fail to match engineers to
projects that interest them.

Historical involvement leads to bottlenecking
Information and change.

A “project”-oriented mindset
kills continuity.

* The lifecycle of a software project doesn't
end on a ship date.

* Teams often throw away the development
artifacts they created along the way, or
place them in obscure places.

* Tight scheduling often means no time to
explore what other developers are working
on, or clean up one's own code for others.

As a result, for most, software
re-use Is a myth.

* Some have built asset repositories... with just
tarballs of source code and searchable metadata,
at best.

* Developers have scant incentive to properly
prepare their components for re-use by others, or
consider using someone else's work.

* “Forking” is either not allowed (you can't modify
this work), or wildly uncontrolled (everyone has
their own version).

Software components
are not like bricks.

The fundamental flaw in most of the past discussion

about component re-use: components are never
finished.

All software has bugs.

All software needs adaptation to new platforms
over time.

New requirements can't always be wrapped around
or above existing code.

APIls are conversations, and must evolve over time.

Thus, the biggest hurdle to
re-use Is trust.

So let's say | find an interesting component for my
project.

Who else is using this? What problems have they
faced in using it?

What defects exist? What doesn't the developer
want to admit is a defect?

If | find a defect, who can help me fix it, who do |
send my patch to?

Will there be a patchfix release? A 2.0 release?
How do | participate?

What are some Open Source
best practices?

Transparency into the entire process.
Gradients of access.

Efficient mapping from developer interest to
interesting projects.

No “architects” who can't or won't code.

Dominant personalities only survive if they can still
support a community.

Talk is cheap; (working) code is substance.

One more myth to bust:
development predictability.

* Many corporations still harbor the illusion that
writing software is like working in a factory.

* Despite the process experts who tell them the best
approaches focus on feedback loops and agqility.

* Open Source software gets a free pass on
predictability, of course — who cares that you don't
know what Linux kernel 2.10 will have?

A different metaphor:
the Greenhouse.

Look at the collection of internal projects as if they
were plants managed by gardeners.

Take risks by seeding more than you expect to
harvest, hedging your bets.

Set general directions with queues of desired
features and bugfixes.

Weed, train, adjust techniques, then harvest when
the time is right.

Make no promises until harvest time.

Ongoing and interdependent

* The greenhouse metaphor encourages the view of
software lifecycles as ongoing, long past release.

* |In a single environment like a greenhouse,
iInterdependence is implicit, and allows for
lightweight and ad-hoc coordination between
projects.

* Developers are the gardeners, and being

responsible for some plants and admirers of others
Is the norm.

How do you roll this out?

Find a pilot group willing to be the example.

Allow them to define the initial size of the
community.

Go “virtual” from day one: start with specs,
customer requests, any initial artifacts in a single,
consistantly viewed space.

Stay visible in activity and intent throughout the
project.

Err on the side of revealing too much rather than
not enough - a “need to know” mentality is
cancerous to the project.

More roll-out tips...

Build cross-project teams around certain
technologies or standards.

Provide financial incentives for re-use, and helping
others re-use your work.

Provide slack time for long-term improvements.

Invite others not directly involved, but with related
efforts, to observe and participate.

As virtual as all this is, face-time to build trust is
essential at the start.

Moving discussions and
decision-making online.

* S0 much knowledge is created, and so many
implicit decisions are made, in the ad-hoc
conversations between developers, project
managers, business owners, and customers.

* Capturing that is essential to re-use, as often code
does not speak for itself and documentation and
specs are incomplete or conflicting.

* Capturing the debate about a topic allows that
discussion to be avoided the next time; or
restarted quickly if new data emerges.

Moving discussions online Is
difficult, but essential.

Allow — perhaps even require - developers to work
from home one or two days every two weeks.

Work intentionally with one or more people in a
remote location.

It causes everyone to think about their words in a
way that anticipates future review by people you
don't know — a good discipline.

Conference calls and in-person conversations still
have a role; but reflect them digitally in some way,
and allow for participating in decision-making by
online parties.

Pitfalls

* Not everyone is proud of their past work -
establish an atmosphere of amnesty for
the past.

* Personality conflicts are inevitable - either
resolve them through management and
coaching, or move someone out.

* This is one of the bigger problems the OS
community has: time and effort wasted
by fruitless argument.

How do you
measure success?

Projects should end up seeing a more graceful and
continuous life beyond their release.

Bringing new developers aboard, even those in distant
locales, should be easier.

Fewer conference calls, less of an oral culture.

Do developers refer to prior discussions when making
decisions?

Ask the developers themselves... anecdotal evidence can be
the most compelling.

Expect to see lightweight involvement by developers in
other projects; and by other stakeholders in theirs.

Q&A

The importance of slack time.

* A less time-controlled approach allows for
more slack time by good developers.

* Slack time in a schedule helps by allowing
the developer to:

- look around speculatively at what other

teams
- help ot

nave built, and are working on.

ners to re-use or refactor code.

