

Bringing Open Source Software
Collaboration to Corporate

Environments

Brian Behlendorf
CTO, CollabNet

Co-Founder, Apache Software Foundation
Board Member, Mozilla Foundation

The corporate software
development disaster

● > 45% of software development projects in
2003 were cancelled; another 30% are
completed late and/or with reduced
features.

● The trend is not in a positive direction –
failure rates have risen the last ten years.

● Source code management practices: reality
often defies expectations (and belief).

Some of the more notorious
examples:

● U.S. Government failures at the IRS and DoD
– “There are very few success stories,” said Paul

Brubaker, former deputy chief information officer
(CIO) at the Pentagon

● AT&T Wireless “Self-Destructs” - CIO
Magazine, Apr 15 2004
– “The story of a botched CRM upgrade that cost

the telco thousands of new customers and an
estimated $100 million in lost revenue. Hard
lessons learned.”

What's behind these failures?

● Slow feedback loops from inception to use.
● High underlying technology churn.
● Poorly documented prior systems and

requirements.
● The growing difficulty in estimating

development effort.
● Demotivated developers due to outsourcing

or lack of development agility.

Developers as “resources”
● Myth: developers are often seen as commodity,

like assembly line workers.
● Reality: the productivity difference between a

paycheck-driven developer and a motivated,
talents one is modulo two orders of magnitude.
[Brooks]

● Corporations usually fail to match engineers to
projects that interest them.

● Historical involvement leads to bottlenecking
information and change.

A “project”-oriented mindset
kills continuity.

● The lifecycle of a software project doesn't
end on a ship date.

● Teams often throw away the development
artifacts they created along the way, or
place them in obscure places.

● Tight scheduling often means no time to
explore what other developers are working
on, or clean up one's own code for others.

As a result, for most, software
re-use is a myth.

● Some have built asset repositories... with just
tarballs of source code and searchable metadata,
at best.

● Developers have scant incentive to properly
prepare their components for re-use by others, or
consider using someone else's work.

● “Forking” is either not allowed (you can't modify
this work), or wildly uncontrolled (everyone has
their own version).

Software components
are not like bricks.

● The fundamental flaw in most of the past discussion
about component re-use: components are never
finished.

● All software has bugs.
● All software needs adaptation to new platforms

over time.
● New requirements can't always be wrapped around

or above existing code.
● APIs are conversations, and must evolve over time.

Thus, the biggest hurdle to
re-use is trust.

● So let's say I find an interesting component for my
project.

● Who else is using this? What problems have they
faced in using it?

● What defects exist? What doesn't the developer
want to admit is a defect?

● If I find a defect, who can help me fix it, who do I
send my patch to?

● Will there be a patchfix release? A 2.0 release?
How do I participate?

What are some Open Source
best practices?

● Transparency into the entire process.
● Gradients of access.
● Efficient mapping from developer interest to

interesting projects.
● No “architects” who can't or won't code.
● Dominant personalities only survive if they can still

support a community.
● Talk is cheap; (working) code is substance.

One more myth to bust:
development predictability.

● Many corporations still harbor the illusion that
writing software is like working in a factory.

● Despite the process experts who tell them the best
approaches focus on feedback loops and agility.

● Open Source software gets a free pass on
predictability, of course – who cares that you don't
know what Linux kernel 2.10 will have?

A different metaphor:
the Greenhouse.

● Look at the collection of internal projects as if they
were plants managed by gardeners.

● Take risks by seeding more than you expect to
harvest, hedging your bets.

● Set general directions with queues of desired
features and bugfixes.

● Weed, train, adjust techniques, then harvest when
the time is right.

● Make no promises until harvest time.

Ongoing and interdependent

● The greenhouse metaphor encourages the view of
software lifecycles as ongoing, long past release.

● In a single environment like a greenhouse,
interdependence is implicit, and allows for
lightweight and ad-hoc coordination between
projects.

● Developers are the gardeners, and being
responsible for some plants and admirers of others
is the norm.

How do you roll this out?
● Find a pilot group willing to be the example.
● Allow them to define the initial size of the

community.
● Go “virtual” from day one: start with specs,

customer requests, any initial artifacts in a single,
consistantly viewed space.

● Stay visible in activity and intent throughout the
project.

● Err on the side of revealing too much rather than
not enough - a “need to know” mentality is
cancerous to the project.

More roll-out tips...
● Build cross-project teams around certain

technologies or standards.
● Provide financial incentives for re-use, and helping

others re-use your work.
● Provide slack time for long-term improvements.
● Invite others not directly involved, but with related

efforts, to observe and participate.
● As virtual as all this is, face-time to build trust is

essential at the start.

Moving discussions and
decision-making online.

● So much knowledge is created, and so many
implicit decisions are made, in the ad-hoc
conversations between developers, project
managers, business owners, and customers.

● Capturing that is essential to re-use, as often code
does not speak for itself and documentation and
specs are incomplete or conflicting.

● Capturing the debate about a topic allows that
discussion to be avoided the next time; or
restarted quickly if new data emerges.

Moving discussions online is
difficult, but essential.

● Allow – perhaps even require - developers to work
from home one or two days every two weeks.

● Work intentionally with one or more people in a
remote location.

● It causes everyone to think about their words in a
way that anticipates future review by people you
don't know – a good discipline.

● Conference calls and in-person conversations still
have a role; but reflect them digitally in some way,
and allow for participating in decision-making by
online parties.

Pitfalls

● Not everyone is proud of their past work –
establish an atmosphere of amnesty for
the past.

● Personality conflicts are inevitable – either
resolve them through management and
coaching, or move someone out.

● This is one of the bigger problems the OS
community has: time and effort wasted
by fruitless argument.

How do you
measure success?

● Projects should end up seeing a more graceful and
continuous life beyond their release.

● Bringing new developers aboard, even those in distant
locales, should be easier.

● Fewer conference calls, less of an oral culture.
● Do developers refer to prior discussions when making

decisions?
● Ask the developers themselves... anecdotal evidence can be

the most compelling.
● Expect to see lightweight involvement by developers in

other projects; and by other stakeholders in theirs.

Q & A

The importance of slack time.

● A less time-controlled approach allows for
more slack time by good developers.

● Slack time in a schedule helps by allowing
the developer to:
– look around speculatively at what other

teams have built, and are working on.
– help others to re-use or refactor code.

