

OPEN SOURCE SOFTWARE
MANAGEMENT FRAMEWORK

Nina Helander, Timo Aaltonen, Teemu Mikkonen, Ville Oksanen,
Mikko Puhakka, Marko Seppänen, Tere Vadén, Niklas Vainio

eBRC Research Reports 38
Tampere 2007

Distribution
eBRC
Tampere University of Technology and University of Tampere

Published by
Tampere University of Technology (TUT) and University of Tampere (UTA)

Printed edition Electronic edition in http://www.ebrc.fi
ISSN 1459-0158 ISSN 1459-0166
ISBN 978-952-15-1855-3 (TUT) ISBN 978-952-15-1856-0 (TUT)

978-951-44-7110-0 (UTA) 978-951-44-7111-7 (UTA)

Printed by Cityoffset Oy, Tampere 2007

 1

Table of Contents
FOREWORD 2

1 PART I: INTRODUCTION 5

1.1 OVERVIEW TO OSS BUSINESS AND ITS DEVELOPMENT 5
1.2 BASIS FOR THE RESEARCH: DIFFERENT OSS USER ROLES 6
1.3 STRUCTURE OF THE REPORT 8

2 PART II: GUIDELINES FOR SUCCESSFUL COMMUNITY PARTICIPATION 9

2.1 FACTS ABOUT THE CASE COMMUNITIES 9
2.1.1 DEBIAN 9
2.1.2 GNOME 10
2.1.3 ECLIPSE 11
2.1.4 MYSQL 12
2.2 TOOLS FOR RECOGNIZING SUSTAINABILITY RISKS 13
2.3 CONCLUSION: TYPOLOGY OF OS COMMUNITIES 14

3 PART III: TOWARDS SUCCESSFUL OPEN SOURCE PROJECT EVALUATION 19

3.1 INTRODUCTION TO EVALUATION OF OSS PROJECTS FROM BUSINESS PERSPECTIVE 19
3.2 DIFFERENT EVALUATION TOOLS FOR OSS PROJECTS 20
3.2.1 OPTAROS’ MODEL 20
3.2.2 OPEN SOURCE MATURITY MODEL (OSMM) 21
3.2.3 QUALIFICATION AND SELECTION OF OPEN SOURCE SOFTWARE (QSOS) 23
3.2.4 BUSINESS READINESS RATING (BRR) 26
3.2.5 COMPARISON AND CONCLUSION OF THE SELECTED MODELS 30
3.3 EMPIRICAL TEST: EVALUATING GNOME WITH BRR MODEL 31
3.3.1 CHOOSING AN EXAMPLE SOFTWARE 31
3.3.2 APPLYING BUSINESS READINESS RATING 31
3.4 LESSONS LEARNT 34

4 PART IV: CONCLUSIONS 38

4.1 MANAGEMENT GUIDELINES FOR DIFFERENT OSS USER TYPES 38
4.2 EVALUATION OF THE RESULTS AND INSIGHTS FOR FURTHER OSS STUDIES 42

REFERENCES 44

APPENDIX 1: OPEN SOURCE BUSINESS REFLECTIONS 45

APPENDIX 2: INTRODUCTION TO LICENSE CHECKER 50

APPENDIX 3: VALUE NETWORK ANALYSIS OF DEBIAN AND ECLIPSE 68

APPENDIX 4: OSSI RESEARCH IN A NUTSHELL 87

 2

Foreword

Without no doubt it can be stated that OSS is a multifaceted phenomenon that from
the companies’ perspectives affects the ways of doing R&D, HR, marketing, sales,
communications, legal operations, etc. It is inherently such a multidimensional
phenomenon that it would be hard to understand it, if we would look it only from one
perspective. Instead, we need to have a multidisciplinary approach.

These kinds of fundamental thoughts were expressed by Dr. Ari Jaaksi from Nokia
Multimedia and Professors Tommi Mikkonen and Saku Mäkinen from Tampere
University of Technology, when they started to write the first draft of the OSSI
research plan. As acting the ideological fathers of this project, we would like to
express our deepest gratitude to these gentlemen. Without them the project would
have not been kicked off.

In order to build a strong multidisciplinary research project we need an idea, but also
a network. The network would not have been created without director Petri Räsänen
from COSS, director Marko Seppä from eBRC and Professor Juha Laine from
Helsinki University of Technology, who gave their valuable time to build and develop
the network, in which researchers from Helsinki University of Technology, Tampere
University of Technology, University of Tampere and Helsinki School of Economics
have been able to cooperate successfully. We wish to most warmly thank these
gentlemen for their networking skills, but also for their supervision throughout the
project.

We also want to express our sincerest gratitude to Tekes and Verso technology
program, which have made the research project possible. Especially we want to thank
Keith Bonnici and Matti Sihto.

We have had the privilege to work with a number of great industrial partners during
the OSSI project. We are extremely grateful to Nokia Multimedia, IBM, Nokia
Siemens Networks, ABB, F-Secure, Plenware Group, PricewaterhouseCoopers,
Teknologiakeskus Hermia, TietoEnator, SUN Microsystems and WM-data, with
whom we have had the chance to study as inspiring phenomenon as OSS is.

Additionally, we would like to give special thanks to all of our collaboration partners.
Especially we would like to thank Stephen Walli, for his valuable comments during
our research work and his invaluable comments on this report. We would also like to
thank Marjut Anderson from COSS and Hanna Martin-Vahvanen and Maria
Antikainen for their valuable efforts in OSSI project. We would also like to thank the
COSI research project for fruitful co-operation, as well as all other OSS researchers in
Finland.

OSSI as a research project has lasted two years, from 1.7.2005 to 30.6.2007, but we as
a group of researchers will continue our research work together in future projects. We
strongly believe that OSS is a basis for new businesses and business models, offering
innovative possibilities for different kind of actors: service providers, software
developers, system integrators, end user organizations and individuals, etc. However,
as OSS challenges many of the old and familiar ways companies to operate, we need

 3

further understanding on OSS, both on a strategic and operational level. That is why
we believe that successful utilization of OSS requires new kind of thinking and
innovative management tools and models. To contribute on our part to this
development, we will continue, enthusiastically, our studies on OSS.

At this point of our research journey, it is however, time to sum up the results we have
achieved so far. In this report that serves as the final report of OSSI research project,
we will summarize the main results of OSSI research project. However, in the earlier
research reports of OSSI, 1) Essays on OSS Practices and Sustainability, 2) Empirical
Insights on Open Source Software Business and 3) Multidisciplinary Views to Open
Source Software Business, important and complementary views and results are also
brought up. Throughout the project we have also actively published in academic
journals and edited books (especially to mention the recently published Handbook on
Open Source Software Research). At the end of this report, a list of these publications
with a short description on the issues covered in them is offered.

This report concentrates on presenting the tools and models that together form the
OSS management framework. The results are written by keeping mind the needs of
companies, as OSSI project has foremost been an industry driven research guiding the
researchers to work together to bring multidisciplinary, but yet unified view for
companies looking to utilize OSS.

We would like to point out that our research results are based on analysis of four
Open Source communities, Eclipse, GNOME, Debian and MySQL. Although these
four case communities represent different types of Open Source communities, they
still are just four of the over 100 000 Open Source projects. Thus, the generalizability
of our research results should be carefully kept in mind when applying the results in
practice.

This report comprises four sections, the introduction part, the community part, the
OSS evaluation part and finally, the conclusion. In addition to this main content of the
report, there are four appendices, which bring up complementary views on OSS, in
the end of the report.

In the introduction of the report, a short overview to OSS business development is
presented. We will also present the base for our analysis, a typology of different OSS
utilization roles that is further used in our analysis and in the development of the OSS
management tools. We would like to point out that the typology serves well for
analytical purposes, but in practice the differences between different OSS utilization
roles are not so clear.

The Part II of the report concentrates on the four case communities of the research.
We present the basic facts and characteristics of these communities as well as some
results of OSSI surveys. Finally, the Part II presents ways of distinguishing between
different types of communities, guidelines to identify potential community risks and
best practices for interaction with different community types. The sustainability
analysis tool is presented in this part of the report.

The Part III deals with the issue of OSS evaluation. The questions that are crucial for
evaluation are presented, before we go through four existing evaluation models. On

 4

the basis of analysis of these models, we will present an improved evaluation model,
which offers a more comprehensive view to OSS evaluation.

In the fourth part of the report, the conclusions are presented. In the conclusions,
check-lists and guidelines relevant to each OSS utilization role are presented. These
include considerations from technological, sociological, business and legal
perspectives.

In the end of the report are appendices that include complementary issues to the main
results, as they bring forward Open Source business reflections, introduce the license
checker tool developed as one important OSS management tool during the OSSI
project, present a comparative value network analysis of two case communities and
lastly, summarize the publications of OSSI project by themes.

We hope that all organizations that seek to benefit from OSS find this report useful!

OSSI Research group

 5

1 PART I: INTRODUCTION

1.1 Overview to OSS business and its development

The development of Open Source Software (OSS) business can be captured in the
sentence “From Free Software to Open Source and Commercial Open Source”. We
summarize the history of OSS business in three eras. The summary is, however,
simplistic on purpose, and the borders between the eras are not sharp. For instance,
the practice of sharing software and working on it collaboratively is as old as software
itself, predating the Internet by decades. Correspondingly, co-operatively written and
shared software has been a part of commercially marketed products at least since the
80's. The eras are as following:

Era I: 1985 - Free Software and Richard Stallman
In 1985 in order to promote the idea of freedom, Stallman founded The Free
Software Foundation (FSF). For the goals of the Foundation he outlined the four
freedoms of Free Software that should be an industry practice:
1) The freedom to run the program as you wish;
2) The freedom to study the source code and to change it to do what you wish;
3) The freedom to make copies and distribute them to others; and
4) The freedom to publish or more generally, distribute modified versions.
In 1989 FSF introduced the GPL (General Public License) to be used in
distributing software under terms meeting the ideas of the four freedoms of
software. Two years later, in 1991, GPLv2 was introduced. The GPL continues to
be the most popular license type used both for free software and open source
(FOSS). In short, from Stallman’s viewpoint the idea of free or open software is
an issue of ethics and ethical behavior, not technical superiority or business
interests.

Era II: 1998 - Open Source Software and Eric Raymond
Eric Raymond felt early on that the most radical thing about GNU/Linux was not
the fact that it was the first free operating system, but in that by creating the kernel
Linus Torvalds had invented a totally new way of developing software by making
use of thousands of volunteer developers collaborating over Internet in a
distributed “organization” towards a common goal. This new “Bazaar-style”
development methodology is, in Raymond’s view, a better, more efficient way
than the traditional hierarchical and controlled way. He crystallized the benefits in
the now famous slogan “given enough eyeballs, all bugs are shallow.” The
direction of Raymond’s quote is often taken on the back end, i.e. once a bug is
noted, the number of people involved can quickly make short work of the bug.
However, the actual strength of Linus’s law can be understood on the front end.
Any form of software inspection finds more bugs than testing. Hence, code being
submitted on the reflectors is inspected by far more people in a well run project
than would normally happen in a traditional top down project (See e.g. Conradi et
al. 1999). By 1997 he had written and released the classic essay “The Cathedral
and the Bazaar” that highlights the key issues in this new approach. In February
1998 Raymond founded the Open Source Initiative, and quickly got support
during the year as, e.g., IBM, Sun Microsystems, Oracle, Informix and Corel

 6

announced initiatives to support Open Source. This meant Open Source and some
ideas (not all!) of Free Software were making their way into big businesses and
their software practices.

Era III: 2005 - Commercial Open Source Software
After several years of steady growth in popularity of open source, and it having
started to challenge incumbents in many fronts, in 2005 a new term appeared
“Commercial Open Source Software”, used by, e.g., Microsoft. With the rising
popularity of open source, that has somewhat challenging, or even disruptive,
business-models for many incumbent software companies, this new term was
introduced to describe, e.g., mixed source products where part of the code is open
and part proprietary, making it possible to offer own products under the same
license fee based model as before, while getting the benefits of open source code
without having to pay a license fee on that. This of course is quite far from the
ethical ideas originated by Stallman, but it is easy to see why businesses are trying
this.

We have come from an idealistic goal of doing things in the ethical way into a world
where the models, such as GPL license, are used not to give or promote freedom of
developers but rather the business interests of both small and large companies,
sometimes at the expense of developers’ freedom. Nevertheless, the role of companies
is growing in the Open Source field, and the next question could perhaps be if Open
Source becomes business as usual.

One thing is for sure; Open Source is here to stay. It has gained a strong foothold in
software business, and nowadays other businesses are also keen to find what kinds of
new ideas and ways of operation it may offer. Best practices of open source
communities to govern and to develop are increasingly studied and transferred into
other areas of business. Still, there exist many issues yet to be solved within software
business. Governance methods and communication structures typically used in open
source do not fit well with the typical organisation structure of a firm. To merge these
two aspects needs a lot of effort and understanding of the best of both halves.
Answers are needed to questions like: How the sustainability of Open Source
procurement can be guaranteed?, How can we utilise open source in our business?,
and How to manage the use of OSS and the interaction with the OSS communities? In
OSSI research project, these issues were in foci.

1.2 Basis for the research: different OSS user roles

As OSS changes many of the basic rules of software development and business,
companies that use open source software in their business need a comprehensive view
on how to deal with the phenomena, not just one narrow view from a specific
scientific discipline. In OSSI, this multifaceted phenomenon has been studied from
the viewpoints of technology, sociology, law and business.

In Figure 1, below, these aspects are illustrated. From the technological point of view,
the main questions have been the structure and quality of OSS code in comparison to
code produced by other, more traditional, views. This point of view has been closely
connected with the sociological one, the main question of which has been the

motivations and socio-cultural backgrounds of the developers. The changing legal
framework and licensing practices have been the focus of the perspective from the
point of view of the law. All of these have informed and been informed by the
business perspective, where the main question has been the developing landscape of
building business on OSS. The research question that ties all these strands together is:
How can the interaction between commercial companies and OSS communities best
be managed?

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES
OTHER
PUBLIC/
PRIVATE

INFLUENCE

SOCIOLOGYSOCIOLOGY

TECHNOLOGYTECHNOLOGY

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK INCREASES

BUSINESSBUSINESS

LAWLAW

Figure 1. Different OSS user types have different needs for OSS management framework

In addition to these aspects, an important viewpoint is the different roles that
companies in participating in the OSS may play. These five stages acted as the
starting point for our analysis in OSSI project, including stages from utilizing OSS
applications to launching new communities, which are situated along a continuous
scale of ever increasing intensity of OSS involvement. The research assumption is that
as the involvement intensifies, also the task of managing that involvement gets more
complex and crucial.

The two first roles, OSS application utilization and OSS as tools in R&D, are the least
demanding. However, already here it is important to evaluate the quality of the OSS
applications to be used, and to assess the longevity of the communities behind the
applications. When we move to OSS component integration, the role of the
community interaction increases. A company doing the interaction will have to be
involved with several communities, and the success of one or several of these will be
decisive for the longevity of the integrated software. The sustainability and
productivity of these communities will have to be evaluated, and a strategy for being a
good “open source citizen” developed for mutually beneficial community interaction.
The role of active management and participation in OSS communities is needed, for
instance, when OSS software is a crucial element in a product or service provided by
the company. The company will have to take an active, maybe even leading role in the
life of the community. This might mean taking part in the decision making,
contributing to the organisation of the community, if such exists, and hiring

 7

 8

developers in/from the community or other means of remuneration. Consequently,
more refined and complex tasks of community evaluation have to be undertaken, and
an explicit and detailed management framework developed and implemented. A vivid
understanding of the differences between types of OSS communities and the historical
development they go through becomes necessary.

Finally, a company might decide that it needs to launch a new community by it self.
Here being a good OSS citizen is not enough. One has to show consistent leadership
and demonstrate staying in power in the sifting market. The competition for talented
developers is a competition for mind-share, so a factor of coolness and promises of
great things to come have to be given – and also kept. Issues of sustainability and
community type become paramount.

1.3 Structure of the report

This report comprises of four sections, the introduction part, the community part, the
OSS evaluation part and finally, the conclusion. In addition to this basic content of the
report, there are four appendices, which bring up complementary views on OSS, in
the end of the report.

In the introduction of the report, a short overview to OSS business development was
presented. The illustration of the different OS utilization roles was presented, as these
act as the bases for the development of the OSS management tools for companies.

Part II concentrates on the communities chosen to be empirically studied in the OSSI
project. We present the main facts and characteristics of these communities, as well as
some results of OSSI surveys. Finally, part II presents ways of distinguishing between
different types of communities, guidelines to identify potential community risks and
best practices for interaction with different community types.

Part III deals with the issue of OSS evaluation. The questions that are crucial for
evaluation are presented, before we go through four existing evaluation models,
Optaros’ Enterprise Readiness (ER) model, Open Source Maturity Model (OSMM) by
B. Golden, a model for Qualification and Selection of Open Source Software (QSOS),
and finally, Business Readiness Rating (BRR). On the basis of these models, part III
also presents the outlines of an evaluation model that we feel to be an improvement on
the existing ones.

Finally, in the conclusion part the main results are presented.

2 PART II: GUIDELINES FOR SUCCESSFUL
COMMUNITY PARTICIPATION

2.1 Facts about the case communities

The communities in our study were Debian, Gnome, Eclipse and MySQL. The four
communities were chosen to represent different types of OS projects. In the following,
central facts about each of these communities are presented. The text bases partly on
the results of our survey of these case communities. The survey was carried out in
2005-2006 and the main results of the survey were presented in the OSSI report
“Empirical insights on Open Source Software”.

2.1.1 Debian

Debian GNU/Linux is one of the oldest Linux-based distributions still in existence.
The project started in August 1993 making it the oldest of the four. Debian has been
and still is a project based on volunteer work. The Debian community doesn't produce
software in the narrow sense of the word; instead it focuses on packaging existing
free/open source software to integrate it in the Debian operating system. At the
moment, Debian consists of 19 000 packages, which are maintained by approximately
2000 maintainers. The distribution is popular as a server operating system but it is
being used also in workstations and embedded devices. Ubuntu Linux is a variant
(fork) of Debian that is currently gaining popularity.

Debian developers would like to see companies to "Certify products on Debian”;
e.g., by stickers saying "Works on/with Debian"

The social organisation of Debian is built around the technological architecture
(packages). Each package has a maintainer (sometimes a few maintainers) that has the
primary responsibility for the package. Common packaging rules, guidelines and
principles have been compiled into guides such as the Debian Policy Manual. But not
only technical decisions are being regulated like this. The most important values of
Debian have been codified into the Debian Social Contract. This document, together
with its appendix Debian Free Software Guidelines, defined the value basis and goals
of the project. The Social Contract emphasises freedom of the software and promises
to keep Debian fully free, transparent and to give back to the free software
community. Software packages in Debian have different licences, but all of them need
to meet the requirements of Debian Free Software Guidelines to be included in the
distribution. Software that is freely distributable does not fully meet the criteria (e.g. if
the software may not be used for commercial purposes), and is sometimes included in
the unofficial "non-free" section.

Debian has also a formal organisation that is defined in the Debian Constitution. The
project has a Project Leader elected every year by maintainers that have received the
official status of Debian Developer. The role of the project leader is to coordinate and
to represent the project, and the Leader may appoint delegates to coordinate some

 9

tasks. Debian Developers also have the right to propose General Resolutions or
Constitutional Amendments that are voted upon. For example the status of software
and documentation that doesn't meet the Free Software Guidelines criteria has been
the topic of a heated discussion.

Debian has formalized its modus operandi with a written Debian Social Contract
and the Debian Constitution"

In our survey, the Debian Project was also the largest community. The project
maintains official mailing lists, technical infrastructure and conferences for
communication and coordination between developers. In 2005 there were 965 (2007:
1013 <http://www.us.debian.org/vote/2007/vote_001_quorum.log>) developers with
voting rights in the yearly elections (504 did vote) and the developer database
contained 1411 names (22.11. '05). The majority of developers in our survey were
highly educated males with degrees, but there was a significant amount of high school
student also (22%).

Debian is famous for being one of the most freedom oriented, politically aware and
volunteer-centered FOSS communities. Its longeivity and robustness are probably
results of the well maintained community focus. Volunteers have been active because
their freedom and the freedom of the code has been guaranteed. Consequently, the
recent introduction of monetary rewards for developers has not been smooth. A
project called Dunc-Tank was launched in 2006 to provide funding for developers
working on Debian. This has allegedly prompted some developers not involved in
Dunc-Tank to reduce their effort or even abandon work on Debian, citing the creation
of a "two-class" system as the reason for their disenchantment. However, a clear
majority (95%) of Debian developers see company participation in OS development
as a good thing (for details, see Mikkonen, Vaden & Vainio 2007).

2.1.2 GNOME

The Gnome (originally from the acronym GNU Network Object Model Environment)
project is an effort to build a free software desktop environment. It was launched in
1997 by the GNU project and is licensed under LGPL for its libraries and GPL for the
actual parts of the program.

The Gnome project is loosely organized and the discussion chiefly occurs on a
number of public mailing lists. GNOME is an umbrella for software which is used in
conjunction of an operating system like Linux and Solaris. It is an organized
community with ca. 1000 members who are working in usability, accessibility and
QA teams. The GNOME release team has defined new releases to occur every six
months.The project is given structure by the Gnome Foundation that has a Board of
Directors as well as an Advisory Board. The advisory board consists of members from
companies and other entitites that support Gnome, including, e.g., ACCESS,
Canonical, Debian Project, Free Software Foundation, Hewlett-Packard, IBM,
Imendio, Intel, Nokia, Novell, OLPC, OpenedHand, Red Hat, Software Freedom Law
Center, Sun Microsystems.

 10

The GNOME Foundation oversees the development of the project & brings
community & companies together.

GNOME is ten years old with relatively young developers. In our study (see
Mikkonen, Vadén & Vainio 2007) the mean age of the GNOME developers was 27.
GNOME developers are mainly men and they are quite highly educated. Most of the
GNOME developers in our survey had Bachelors degrees but there were significant
amount of Masters, too. The developers in GNOME community are mostly
volunteers, but there are also some developers who get a salary for developing
GNOME. The GNOME community is closer to Debian than for example Eclipse or
MySQL with it's relatively poorly salaried, young volunteers.

GNOME developers suggest to companies: Do quality assurance work!

2.1.3 ECLIPSE

Eclipse is a platform independent software framework for delivering so called rich-
client applications. It was founded 2001 by a consortium pf companies including, e.g.,
Borland, IBM, MERANT, QNX Software Systems, Rational Software, Red Hat,
SuSE, TogetherSoft and Webgain. Later the consortium has grown to over 80
members. Eclipse platform became open source when IBM released it 2004.

Eclipse is an umbrella project composed of many different software projects. In its
internet sites it describes itself as "an open source community whose projects are
focused on providing a vendor-neutral open development platform and application
frameworks for building software". There is a non-profit foundation behind the
Eclipse community which is "formed to advance the creation, evolution, promotion,
and support of the Eclipse Platform and to cultivate both an open source community
and an ecosystem of complementary products, capabilities, and services". Eclipse
hosts 9 major open source projects with over 50 subprojects and it is estimated to have
about 500 developers. Consequently, it is difficult to estimate how many developers
are in the overall community.

In our survey most of the developers in Eclipse were professional and usually got paid
for their work on Eclipse. They are also mostly middle-aged men (mean age is 38)
and have better incomes then the developers of GNOME or Debian. It is still difficult
to say how these characteristics describe Eclipse community generally, because of the
fragmented structure. Eclipse is a community of the communities and it might be
helpful to research these communities also separately.

 Eclipse has a detailed and still developer friendly IP-policy

 11

Corporate legal departments are typically wary of relative chaotic nature of IP-
management found from most of the small and midsize open source projects.
However, due to its corporate roots, Eclipse has given special attention to this are. The
project shows how a very detailed and safe IP-policy can be established without
alienating the developers. Special attention has been given to make the language in
legal sections as understandable as possible for non-lawyers. Additional agreements
are used to ensure that all contributions are “made by the rightful copyright holder and
under the Eclipse Public License (EPL).”

Eclipse developers expect from companies: Explore business models that exploit
EPL code.

2.1.4 MySQL

MySQL is a multithreaded, multi-user, SQL Database Management System. MySQL
is available both as free (GPL) and as proprietary software. The company MySQL AB
develops and maintains the system, selling support and service contracts, as well as
proprietary-licensed copies of MySQL. Both volunteers and employees of MySQL
(the company) participate in development.

There were already in about 1979 first ideas and code conceived for MySQL, but the
development of MySQL itself started in 1995 with a first release at the end of 1996.
MySQL has over 300 employees in over 25 countries and is one of the largest open
source companies worldwide. Together with Linux, Apache and PHP/Perl/Python,
MySQL forms one of the building blocks of the LAMP technology stack. The
MySQL AB claims a user base of over 8 million MySQL installations worldwide, and
over 50,000 product downloads in daily. In 2005 MySQL reached about 40 million
euro revenues, and stated having reached profitability.

In our survey there were only 14 answers from MySQL, so the representativeness isn't
very high. Still, if you look at the results of our survey and compare them to the
knowledge which is available in internet, it is easy to find some characteristics of the
MySQL community. In our survey almost all participants got some salary from their
work related to MySQL. They were highly educated and mostly men. Almost all
developers (80%) were working in MySQL AB.

Correspondigly, MySQL has centralized decision-making system. The community
behind MySQL is small compared for example to Debian and this was one reason for
the small amount of answers.

Widely recommended form of support to communities: Company donates
hardware or other resources.

 12

 13

2.2 Tools for recognizing sustainability risks

As can be seen from the characterisations of the four communities, above, OSS
communities do share some characteristics (male dominance, relatively high level of
education), but are also different in important respects. For instance, the developers of
Eclipse and MySQL are as a trend roughly ten years older than those of GNOME and
Debian. Also the motivations for participating in OSS development are different (for
details, see Mikkonen, Vainio & Vadén 2007). Consequently, we need tools to assess
the risks that the communities face: in a well known way most of the OSS projects
listed on sites like Sourceforge are either dead or “communities” of one. Recognising
some of the bottle-necks of community growth and sustainability will help a long way
in establishing fruitful co-operation.

Below, the evaluatory questions are grouped in four sets, cultural, social, legal and
economic. Social sustainability of a community relies on the individual characteristics
of its members, on its size and form, and the division of labor and power in the
community. Cultural sustainability of a community is defined by its traditions and
history that create and shape its social and ethical norms and practices. While social
sustainability is a matter of interaction between individuals, cultural sustainability is
something that is created during a longer time period as the community matures. The
importance of legal risk management in the OSS world has risen sharply during the
last decade. The economic significance of software has drawn also the attention of the
legal community and as the result the risk of getting sued for patent or copyright
infringement is today very real. Finally, economic sustainability is one matter in
volunteer based communities, and quite another in communities led by strong
companies. However, for both extremes the problem of resources is anything but
solved, and different models are constantly evolving and experimented with.

Social
 1. Are there more than 20 active developers?
 2. Does the community have a trusted main developer?
 3. Does the community have developers with high technical skills?
 4. Is the project cool enough the attract new developers?

Cultural
1. Does the community have a charter that defines the common principles and goals?
2. Is the development process open and inclusive?
3. Does the community have members who participate for ideological reasons?
4. Does the community have members that work for pay?

Legal
1. Does the community have legal expertise?
2. Does the software use a major open source license?
3. Does the software handle legally risky topics (p2p, encryption etc.)?
4. Does the economic footprint of the community attract law suits?

Economic
1. Is the maintenance of technical infrastructure on a sustainable basis?
2. Is some of the development work funded by companies?
3. Are some companies dependent on the community?
4. Does the community have funding for conferences and workshops?

2.3 Conclusion: typology of OS communities

In our survey, all of the communities were positive towards company participation.
Thus, the main question for company participation is not if it is desirable and
beneficial, but rather how. We suggest that FOSS communities may be divided into
different categories according to idealised types, and that answering to the "how"
question of participation must be differentiated according to these (idealised)
typologies.

Traditionally, OSS communities have been started as volunteer projects (e.g., GNU
project, Linux kernel, Debian). The traditional picture of hacker culture (see, e.g.,
Raymod 1999, Levy 1984) as an informal self-organizing bazaar of having fun while
programming has largely been based on volunteer communities like these. However,
the traditional picture has recently changed considerably with more and more
companies participating in OSS communities either by letting their employers work
on OSS or by directly hiring developers working on OSS. Increasingly companies
also initiate OSS communities either by releasing previously closed code or by
directly engaging in OSS development from the start. Consequently, a continuum of
communities from volunteer-based to company-based has appeared. Most generally,
this shift can be observed on the level of the ethos of communities: the ideologically
organized ways in which labor is understood, maintained and given meaning. The
self-organizing volunteer way of "working for fun" has been dubbed "hacker ethics”
by, e.g., Himanen (2001). Himanen wants to explicitly contrast hacker ethics with the

 14

 15

more well-known salary-based commercial ethics that prevails that prevails in modern
corporations, where a division and rationalization of labor takes place based on
institutional rules and hierarchies (Himanen, 2001; see also Lash, 2002).

Consequently, the characterization of OSS communities to volunteer-based or
company-based foes not mean (mainly) the initiation of the project, but rather the
basic ideological framework that motivates and structures the operations of the
community. Typically, a company-based community has hierarchical structures,
employs monetary rewards and divides labor on the basis of preset goals. In contrast,
volunteer-based communities are self-organized, ground motivation on extra-
monetary rewards and work on the basis of informal goal-setting (either anarchic,
democratic or meritocratic). Typically, OSS communities today are a mix of the two
extremes.

The work ethics of a community are closely tied to forms of decision making.
Typically a self-organized community will favor decentralized decision making. One
extreme is given by the decision on release dates in Debian: whenever the release is
ready. In contrast, software development by and in a company will typically be
centralized, with one source of authority deciding on, e.g., roadmaps and schedules. A
middle ground between these two extremes is often sought by establishing a
foundation or a similar organ that gives voice both to volunteers and the various
institutions taking an interest in a given software development project. The foundation
may guide development and structure schedules. Furthermore, communities may be
classified on the basis of their age or maturity, size and the type of license in use:

1) Size of the community. We assume that a larger community is always more
sustainable but potentially increases problem complexity for company participation.
The size of the community must also reach a certain minimum size in order to make
the open source effect work.
2) Maturity of the community. By maturity we mean the strength of the social and
cultural ties, traditions and practices. A mature community is often old in age, and has
developed common guidelines and best practices.
3) Communication and decision-making structures of the community. Different
systems of governance exist in free/open source software communities, including
democracy, meritocracy and dictatorship. Here we look at how centralised
communication is. This tells something about the governance structure, hierarchy and
bottlenecks.
4) License. The type of free/open source software license chosen by the community
potentially affects who will participate in the community. We classify licenses based
on how strong copyleft effect they have. GNU General Public License, for example, is
a strong copyleft license, while Eclipse Public License gives more freedom, and
licenses like the BSD license are not copyleft at all.

When we combine these four elements with the volunteer/company axis, differences
between communities can be identified as can be seen in Table 1 (with examples).

Table 1. Community typology

Volunteer Mixed Company

Small Wordpress MySQL, Laika

Medium OpenBSD Mozilla OpenSolaris

Large Debian Linux (kernel),
GNOME Eclipse

Young Gnash Laika

Developing Wordpress Mozilla OpenSolaris, Darwin

Established GNU, Debian Linux (kernel) MySQL

Decentralized Debian Eclipse

Balanced Linux (kernel)

Centralized GNU Mozilla MySQL

Non-copyleft OpenBSD Apache

Weak copyleft Mozilla Eclipse,
OpenSolaris, Darwin

Strong copyleft GNU Linux (kernel),
GNOME MySQL

License

Hybridity

Size

Maturity

Decision-
making

In the classification above, we can see both differences and similarities between
communities. Based on this analysis, some ideal types can be identified which
characterise some of the most prominent differences between communities. Four ideal
types could be identified:

a) Centralized, company-driven, small community (e.g. MySQL)
b) Large community, several companies, business work ethics (e.g. Eclipse)
c) Large community, several companies, hacker background (e.g. Linux kernel)
d) Volunteer, decentralized, large (e.g. Debian)

 16

 17

Correspondingly, different types of co-operation suit these types. Typically, small
communities are more vulnerable. The risk of losing high-profile developers is
considerable. On the other end, large communities often contain some inertia and may
be susceptible to forks and internal disputes. From the perspective of sustainability, a
large community that has also many participating companies is ideal. Diversity is the
key to longevity in the open source ecosystem, as elsewhere.

a) Centralized, company-driven, small community
 do: direct co-operation with the company
 do: customization in co-operation with the company
 risk: sustainability dependent on single company

b) Large community, several companies, business work ethics
 do: involve own developers in the community
 do: collaboration with companies
 do: genuine contribution to community
 do: involvement in the decision making organs (e.g., Eclipse Foundation)
 don't: expect spontaneous development of code

c) Large community, several companies, hacker background
 do: involve own developers in the community
 do: quality contributions ("Show me the code!")
 do: involvement in the Open Source Development Labs
 do: good open source citizenship and sharing
 do: acknowledge community values
 don't try to push development without participating and contributing

d) Volunteer, decentralized, large
 do: support community (public acknowledgement)
 do: acknowledge community values
 do: be aware of licensing policies
 do: in case of a problem, do-it-yourself
 don't: use the software against the license terms
 risk: internal tensions
 risk: hard to keep deadlines

In Figure 2, this community typology and the position of the case communities are
illustrated.

eclipse

traditional salary - based
work-ethic

“ hacker ethics”

volunteer hybrid non - volunteer

Figure 2. Community typology with regard to work ethics and the positions of the case

communities

 18

 19

3 PART III: TOWARDS SUCCESSFUL OPEN SOURCE
PROJECT EVALUATION

3.1 Introduction to evaluation of OSS projects from business
perspective

Using open source software as a part of business has two sides, internal and external.
Usually most of analysis focuses on external issues, for instance how to select the best
piece of software or how to assess the viability of a particular community. However,
internal issues may play vital role in succeeding implementation of open source.

Internal analysis should start with recognizing current and future needs. Questions
that are useful in recognizing the reasons behind selecting open source software are,
for example, the following:

• Analyzing time scale and urgency
o How soon the output should be on market?
o What is the overall life cycle of the output?

• Analyzing firms own resources and competences
o What competences you need to a) select b) acquire c) maintain a

software (this issue relates closely to outsourcing/purchasing)
o How much resources you are able to invest for this issue?

• Analyzing the reasons to use open source software
o Can you recognize your explicit and implicit motifs?
o Why it is a strategic decision?
o What are the main drivers?
o What is the proposed use: are you going to use that particular piece of

software in experimenting, piloting or production?
• Analyzing the status of relevant information

o Do you know what you do not know?
• Analyzing the future

o When the decisions are made, what consequences will follow?

An assessment task is about tradeoff between accuracy and time (i.e., money).
Depending on answers on the questions above, one should make decisions what will
be the needed level of information. An analytical and detailed approach may be too
time- or resource-consuming when the software is just being experimented.

Another issue is the subject of the assessment. What is actually being assessed or
evaluated? Is it a piece of software? It’s source code? Or is it the quality of the source
code? The project? What about the community producing and maintaining the source
code? Is that community vital enough to ensure the participants of its future, and so
on. Most of the typical evaluation tools for open source products or project are
focused on assessing its completeness or maturity.

 20

3.2 Different evaluation tools for OSS projects

In the following sub-chapters, we provide descriptions of four evaluation tool which
are developed for assessing Open Source products or projects, namely Optaros’
Enterprise Readiness (ER) model, Open Source Maturity Model (OSMM) by B.
Golden, a model for Qualification and Selection of Open Source Software (QSOS),
and finally, Business Readiness Rating (BRR). These models can be regarded as the
“best-of-breed” according to our knowledge. The following presentations of
evaluation models are primarily based on the core sources of each model including
e.g. the model’s website etc.

3.2.1 OPTAROS’ Model

Optaros (2007) is an international consulting and systems integration firm that has
created a catalog to provide a list of products best suited for today’s enterprises. The
catalog and its on-line version complemented with case studies and other information
are available in http://www.eosdirectory.com. Only the products that match the
enterprise benchmark in terms of functionality, community backing as well as
maturity are listed. Technologies/projects are evaluated against four criteria:

a. Functionality is compared with what is usually needed (e.g. in commercial
products).

b. Community demonstrates activity and support of the community behind the
project.

c. Maturity measures quality and robustness of a software product
d. Trend indicates the expected future progress of the software product

Enterprise Readiness (ER) rating indicates how capable an open source software is to
cope with the needs and requirements of midsize and large enterprises and
organizations. ER-rating is indicated by one, two or three stars (Optaros’ catalog does
not list products that do not at least meet the one star level).

Table 2. Optaros ER ratings for Gnome, Debian, MySQL and Eclipse.

Product Version Description/ URL License Support Function-
ality

Comm-
unity

Maturity ER-
Rating

Trend

Gnome 2.14 Graphical desktop
environment for Linux
http://www.gnome.org/

GPL Community

Debian
GNU
/Linux

3.1 Widely used Linux
distribution
http://www.debi
an.org

GPL Community

MySQL 5.0.22 Widely used open
source relational
database
http://www.mysql.com/

GPL Prof /
Community

Eclipse 3.2 Leading Java IDE. The
foundation was
inherited from IBM
VisualAge
http://www.eclipse.org/

Eclipse
Public
License

Community

According to Optaros, for many applications, an open source product with a smaller
functionality scope might be the better choice than a more complex one that does

http://www.eosdirectory.com/
http://www.debian.org/
http://www.debian.org/

more than what is needed. Moreover, in other situations, a simpler tool may be easier
to integrate than a comprehensive one using another technology.

Figure 3. Four software categories and some of the covered subcategories in Optaros’
assessments.

3.2.2 Open Source Maturity Model (OSMM)

The Open Source Maturity Model™ (OSMM) was created by Bernard Golden in
2004. The OSMM provides a framework to determine maturity level of an open
source product. Its purpose is to enable a quick assessment of the maturity level of a
given open source product. It offers great power to organizations evaluating the
production readiness of an open source product, and to demonstrate its power a real
assessment for JBOSS is performed.

The basic question is how to choose the best candidate? By using the OSMM, the
products can be ranked according to their OSMM scores. Golden states that the model
is designed to enable one or two people to spend no more than three to five days
developing an overall maturity score for a product (i.e., to carry out a desk check).

The OSMM assesses a product’s maturity in three phases:

a. Assess each product element’s maturity and assign a maturity score
b. Define a weighting for each element based on the organization’s requirements
c. Calculate the product’s overall maturity score

 21

 22

Table 3. Open Source Maturity Model with default weightings (OSMM, Golden
2004).

 Phase 1: Assess element maturity Phase 2 Phase 3
 Define

requirements
Locate
resources

Assess
element
maturity

Assign
element
score

Assign
weighting
factor

Calculate
product
maturity
score

Product software 4
Support 2
Documentation 1
Training 1
Product
integrations

 1

Professional
services

 1

In a typical maturity assessment, score scale is from 1 to 10. The template in Table X
is available in http://www.navicasoft.com/ as well as the example assessment for
Drupal. Each step in the table is closely examined in the following.

Phase 1

• Define organizational requirements for a particular element. This is a key step
to assess the usefulness of a product for a particular organization.

• Locate resources. Locating resources for an element is more challenging for
open source products, but each chapter (in the book) offers a number of
methods to identify that can assist an organization in implementing open
source software.

• Assess element maturity. Determining where the element lies on the maturity
continuum – from non-existent to production-ready – lets an organization
determine how likely the product will be to satisfy its requirements.

• Assign element maturity score. Assignment provides the assessment of how
well the product meets the organization’s requirements. This score documents
the consensus of the organization. The process of determining the score
requires the members of the assessment team to resolve differences in
perception, make concrete the reasons for their judgment, and come to a
common agreement about the product element. The maturity score serves as
an input into improving the element’s maturity. Elements with low maturity
score can be improved by the organization.

http://www.navicasoft.com/

 23

Phase 2
• Apply product element weightings. Weighting allows each element to reflect

its importance to the overall maturity of the product. Default weightings in
OSMM are shown in Table X above. These weightings may be needed to
adjust based on the specific needs of the organization. The only limitation is
that the sum of maturity weightings must be ten.

Phase 3

• Calculate the product’s overall maturity score. After each element has been
assessed and assigned a weighting factor, the overall product maturity score
can be calculated. The elements scores are summed to give an overall maturity
score on a scale of 1 to 100 that may be compared against recommended levels
for different purposes, which vary according to whether an organization is an
early adopter or a pragmatic user of IT. The following table lists recommended
minimum OSMM scores.

Table 4. Recommend minimum OSMM scores
(http://www.navicasoft.com/pages/osmmoverview.htm)

 Type of User
Purpose of Use Early Adopter Pragmatist
Experimentation 25 60
Pilot 40 60
Production 40 70

3.2.3 Qualification and Selection of Open Source Software (QSOS)

For a company, the selection to choose software as a component of its information
system, whether this software is Open Source or commercially, rest on the analysis of
the needs and constraints (technical, functional and strategic) and on the adequacy of
the software to these needs and constraints. Atos Origin has conceived and formalized
the QSOS method to ease this multi-faceted issue. They have made it available to all
under the terms of GNU Free Documentation License.

Figure 4. Four-step process of QSOS evaluation.

1 Define

4 Select

Assess using weighted scoring
Organise results on multiple axis
Compare among several solutions,

comparison matrix
Select

Assess 2

Enter software data
Score it against defined criteria
Assess risks related to OSS nature
Score general technical/functional

abilities

Qualify 3

Define weighted scoring
Define new criteria if needed
Define mandatory criteria
Re-organise assessment axis if

needed

Refine

Define the criteria used as the
assessment basis

Organise criteria in axis
OSS-related criteria
Technical and functional criteria

The method consists of four steps: definition, evaluation, qualification, and selection
that are described in the following Table 5.

Table 5. Steps in QSOS evaluation.

Step Description
1. Definition Constitution and enrichment of frames of reference used in the

following steps.
2. Evaluation Evaluation of software made on three axis of criteria: functional

coverage, risks for the user and risks for the service provider
(independently of any particular user/customer context).

3. Qualification Weighting of the criteria split up on the three axes, modeling the
context (user requirements and/or strategy set by the service
provider).

4 . Selection Application of the filter set up in Step 3 - "Qualification" of data
provided by the first two steps, in order to proceed queries,
comparisons and selections of products.

The first step, definition, includes defining the following sub-steps:

• Software families, what functionalities needs to be included
• Types of licenses, based on the three criteria: ownership, virality, and

inheritance
• Types of communities, five types identified to date: 1) Insulated developer, 2)

Group of developers, 3) Organization of developers, 4) Legal entity, and 5)
Commercial entity.

The second step, evaluation¸ comprises use of the identity card and the evaluation
sheet. The identity card (ID card) consists descriptions of

• General information (e.g. name, authors, references, licenses)

 24

• Existing services (e.g. documentation, numbers of contractual and training
offers)

• Functional and technical aspects (e.g. technologies of implementation,
roadmap)

• Overall synthesis (e.g. general trends and comments).

The evaluation sheet includes more detailed information than the ID card as it focuses
on identifying, describing and analyzing in detail each evolution brought by the new
release. The main phases are 1) scoring each criterion from zero to two, 2) functional
coverage being determined by the software’s family and proceeding the sub-steps in
Definition, 3) estimating the risk from the user’s perspective (e.g. intrinsic durability,
industrialized solution, and integration). For more information, see the White Paper at
http://www.qsos.org/download/qsos-1.6-en.pdf

The third step, qualification, defines filters translating the needs and constraints
related to the selection of FOSS in a specific context. Filters can be set on ID card,
functional grid (concerning required level of functionality), and perceived risks from
the users and service providers perspective. Filters will be defined in the O3S tool.
Open Source Selection Software (O3S) is a single tool to apply the QSOS method in a
coherent way. This tool is available to the community on the site http://www.qsos.org
to coordinate creation, modification and use of QSOS evaluations.

The fourth and final step is selection which can be done by using strict or loose
method. Strict selection is based on direct elimination as soon as software does not
fulfill the requirements formulated in qualification step. Loose selection allows us to
weight features and compare weighted scores against each other. The O3S tool
enables the consultation of date related to a specific software and the comparison of
software in the same family. This comparison is made by using weighted score
patterns in a radar chart (For an example, see Figure 5).

Figure 5. Radar charts illustrates differences between candidates.

 25

http://www.qsos.org/download/qsos-1.6-en.pdf

 26

Table 6. Summary of QSOS evaluation for MySQL 5.0

SECTION Subscore Overall
Generic 68 of 90
 Intrinsic durability 25/28
 Industrialized solution 12/14
 Packaging 19/24
 Exploitability 3/4
 Technical adaptability 3/6
 Strategy 6/14
RDBMS features 27 of 42
 SQL compliance 1/6
 Classic SQL features 7/16
 Security 2/2
 Transactions 3/4
 Other SQL features 14/14
Advanced features 3 of 10
Tools 6 of 8
Overall MySQL rating 104 (of 150)

3.2.4 Business Readiness Rating (BRR)

Business Readiness Rating™ (BRR) was proposed in 2005 as a new standard model
for rating open source software. It is intended to enable the entire community
(enterprise adopters and developers) to rate software in an open and standardized way.
BRR is a community initiative that is being sponsored by Carnegie Mellon West
Center for Open Source Investigation, O'Reilly CodeZoo, SpikeSource and Intel. The
ultimate goal of BRR is to give companies a trusted, unbiased source for determining
whether the open source software they are considering is mature enough to adopt. It
helps adopters to assess which open source software is best suited to their needs and
enables them to share findings with the community. It promotes use and adoption of
open source software and may assist developers in creating and delivering software
geared to enterprise use.

The calculation employed in the Business Readiness Rating model weights the factors
that have proven to be most important for successful deployment of open source
software in specific settings. Among these are functionality, quality, performance,
support, community size, security, and others. The Business Readiness Rating model
is open and flexible, yet standardized. This allows for broad implementation of a
systematic and transparent assessment of both open source software and proprietary
software.

Figure 6. Overall depiction of Business Readiness Rating Model (www.openbrr.org).

The model offers proposals for standardizing different types of evaluation data and
grouping them into categories. To allow adoption of this assessment model for any
usage requirements the software may have to meet, the process of assessment is
separated into four phases as depicted in Figure 7.

Figure 7. The Four phases of software assessment.

 27

 28

First, a Quick Assessment rules in or out software packages and creates a shortlist of
viable candidates. Second, it ranks the importance of categories or metrics, third,
processes the data, and last, translates the data into the Business Readiness Rating. A
software component’s Business Readiness Rating is scored from 1-5, with one being
“Unacceptable,” and 5 being “Excellent.” In the following sections, the Business
Readiness Rating concept and a high-level overview of how to use the model will be
presented.

Initial Filtering
To assess the business readiness of an open source software component, users may
start by looking at several quantitative and qualitative properties of that component.
During the initial Quick Assessment phase, a simple filter lets potential adopters
quickly rule in or rule out software components with confidence. Several viability
indicators to use as filters in this phase include:

• What is the licensing/legal situation of the software?
• Does it comply with standards?
• Are there referenceable adopters or users for it?
• Is a supporting or stable organization associated with the development
efforts?
• What is its implementation language?
• Does it support internationalization and localization in your desired
language?
• Are there third-party reviews of the software?
• Have books been published about the software?
• Is it being followed by industry analysts, such as Gartner or IDC?

The list of filtering criteria for Quick Assessment is by no means exhaustive. Users
may and should add filters that are important for the particular software package or
situation they are evaluating.

Metrics and Categories
After completing the Quick Assessment process, it is important to look at which
metrics and categories to use for the in-depth assessment phases. Measurable
properties of an open source software project are defined as metrics. To create a
standardized Business Readiness Rating, the raw data of these metrics must be
normalized. Quantitative metrics, such as the number of downloads of a software
package, are relatively easy to normalize whereas normalization of qualitative metrics
is more subjective.

 29

Table 7. Twelve categories for assessing software.

Assessment category Questions describing the category
Functionality How well will the software meet the average user’s requirements?
Usability How good is the UI? How easy to use is the software for end-users?
Quality How easy is the software to install, configure, deploy, and maintain? Of what

quality are the design, the code, and the tests? How complete and error-free are
they?

Security How well does the software handle security issues? How secure is it?
Performance How well does the software perform?
Scalability How well does the software scale to a large environment?
Architecture How well is the software architected? How modular, portable, flexible,

extensible, open, and easy to integrate is it?
Support How well is the software component supported?
Documentation Of what quality is any documentation for the software?
Adoption How well is the component adopted by community, market, and industry?
Community How active and lively is the community for the software?
Professionalism What is the level of the professionalism of the development process and of the

project organization as a whole?

A category rating is obtained by grouping together several metrics that measure the
same aspects. How the rating in one category is calculated may differ from how
another category is measured, but the results should use the same scale (1 to 5). One
metric may contribute to several categories in different ways: for example, a release
cycle of six months indicates a high level of community liveliness but a low level of
stability.

Using the Model
The Quick Assessment phase and defining and ranking of metrics and categories
according to their importance for the software’s functional orientation leads us to the
actions and steps taken in each assessment phase of the model to calculate the
software’s Business Readiness Rating.

Phase 1 – Quick Assessment

• Identify a list of components to be evaluated.
• Measure each component against the quick assessment criteria.
• Remove any components that do not satisfy user requirements from the list.

Phase 2 – Target usage assessment
Category weights

• Rank the 12 categories according to importance (1 – highest, 12 – lowest).
• Take the top 7 (or fewer) categories for that component, and assign a

percentage of importance for each, totaling 100% over the chosen categories.
Metric weights

• For each metric within a category, rank the metric according to importance to
business readiness.

• For each metric within a category, assign a percentage of importance, totaling
100% over all the metrics within one category.

 30

Phase 3 – Data collection and processing
• Gather data for each metric used in each category rating, and calculate the

applied weighting for each metric.

Phase 4 – Data translation
• Use category ratings and the functional orientation weighting factors to

calculate the Business Readiness Rating score.
• Publish the software’s Business Readiness Rating score.

3.2.5 Comparison and conclusion of the selected models

When comparing the presented four models, we may notice that all models use
methods like scaling, weighting, and normalization of metrics. It might be safe to
summarize that no one can get away from these techniques. However, there exist
differences in how these techniques are used or defined. Respectively, all four models
define assessment areas. OSMM is strict in defining its assessment areas and enforce
the utilization of all areas. BRR defines 12 assessment areas, and suggest the
utilization of only seven of them. QSOS uses eight and they can also be tailored for
each case.

In addition, QSOS and BRR differ in how exactly the metrics are defined. QSOS is
not as precise as it only mentions a few metrics. BRR tries to be specific in defining
metrics and the appropriate scales for them. It has been widely recognized that if a
model is too loose, the assessment power of the model will be reduced. For example,
a low quality product may obtain good rating if the model allows itself to be tuned to
favor the product. However, this problem is immanent in all kinds of evaluations.

BRR White Paper (2007) states that such an evaluating model should include the
crucial requirements of a good software rating model as being complete, simple,
adaptable, and consistent (CSAC):
• Complete. The primary requirement for any product rating model is the ability of

the model to highlight every prominent characteristic of the product, whether
favorable or not. This is necessary to prevent that the rating for any product is
never misleading.

• Simple. To gain wide acceptance, the model must be easy to understood and
relatively easy to use. Furthermore, the rating and terminology should be customer
friendly. However, the model’s completeness takes a higher priority.

• Adaptable. Due to rapid changes in the software industry, any software rating
model created today may be irrelevant in the future. During the conception stage,
it is impossible to capture all future potential uses of the model. Therefore, we
strive to build our model with adaptability in mind — and to keep it open. That
way, when the model requires an extension, it will be easy to add one without
much disruption of the current model.

• Consistent. The scales and ratings that the model produces should be consistent
across the model’s different target uses. Comparable ratings for two software
packages from two categories should signify equal business readiness.

 31

We used these criteria in assessing the evaluation models presented previously. As
can be seen in the following Table 8, the BRR model scores the highest overall result
without any adjustments in weightings. Although the comparison can be regarded a
bit superficial and illustrative, the BRR model gains the maximum points in the
adaptability. As a summary, we will continue further in developing the BRR model.

Table 8. Evaluation models assessed with CSAC criteria.

Criterion Weight Optaros OSMM QSOS BRR
 Score Score Score Score
Completeness 25% 2 3 4 4
Simplicity 25% 5 4 2 3
Adaptability 25% 4 3 3 5
Consistency 25% 3 3 3 4
Result 3.5 3.3 3.0 4.0

3.3 Empirical test: evaluating Gnome with BRR model

We tested Business Readiness Rating at Nokia Multimedia. Our partner from Nokia
was Quim Gil, who is responsible for Gnome-related matters at Nokia. Besides, being
related to Nokia Quim Gil is a member Gnome Board, whose members are elected
yearly. The board makes high-level decision in Gnome.

3.3.1 Choosing an example software

Applying a maturity model in an industrial setting requires participation from
industrial partner(s). The optimal setting for applying BRR would have been a case
where one of our industrial partners would have been in a position for selecting an
open source
component. Since such cases are are not too frequent, we were forced to select the
next best option: applying BRR in an imagined setting.

Our frame story was that Nokia hadn't yet selected the desktop environment to its
Internet Tablet, and now they should choose among the alternatives. In other words
we try to make a time trip back to the days when Nokia Multimedia was selecting
desktop system to their internet tablet. Our attempt was to apply the maturity model to
Gnome. Gnome being one of OSSI's four example open source communities is
another argument for selecting it for scrutiny.

3.3.2 Applying Business Readiness Rating

As described in the previous Section, applying Business Readiness Rating consists of
four phases. This subsection describes the phases in out case study.

 32

Quick Assessment Phase

BRR begins with the quick filtering phase, which allows the tester to quickly abandon
the obviously unviable software components. Due to the fact that, Gnome is a well-
known piece of software published under LGPL, it passes this phase easily.

Target Using Assessment Phase

The next task is set the weights to the seven most important categories. The category
weightings are summarized in the following Table 9 and the justifications for these
weight percents are opened up in the text below.

Table 9. Summary of category weightings.

Category Weight (%)
Architecture 20
Documentation 20
Adoptation 20
Quality 10
Community 10
Professionalism 10
Security 5
Support 5
Functionality 0
Usability 0
Scalability 0
Performance 0

Originally functionality was set as high as 15 %. However, our industrial partner was
not willing to enumerate the functional requirements to the software. Therefore, we
were forced to redistribute the weights so that functionality received 0%. The decision
might seem rather strange. However, Quim’s opinion was that functionality is
important, but if some piece is missing Nokia is able to code itself the needed one. On
the other hand, discovering important functionality for a desktop was hard to the
researchers, too. It is quite easy to list trivial features - like the system must support
various input devises - but they are included in all desktops.

Architecture, documentation and adoptation were the most weighted categories with
20% for each. From a large corporation's point of view they form such a basis for a
software component, which can be tailored with respect to internal needs of the
corporation. Architecture has a large impact to the rest of the categories. Having a
decent architecture makes software evolution easier. The need for documentation is an
obvious preresiquite for grasping the internals of the component. Having a large
adoptation including other large companies ensures the continuity of the open source
community. Besides, Nokia does not want to be the first-adopter.

Quality, community and professionalism received each 10% weight. According to
Quim, the quality of the component core must be excellent - the rest can be fixed. The
community produces the software Nokia doesn't want to develop. I.e. thriving
community guarantees the future of the component. Besides, Nokia needs to interact

 33

with someone. Professional ecosystem is a strong criterion for choosing OSS in
Nokia. The other companies make contributions which are usable for all parties.

Security and support are both given 5% of weight. We are dealing with a desktop
environment, in which the security is not such a big issue. However, it is not
meaningless. Justification for support the Nokia should not be the one who needs
support, but the one who gives it to the end users.

The usability category was given 0%, since such those problems can be fixed by
Nokia. Another category receiving 0% was scalability, since it is strongly related to
architecture, and thus, measuring it alone makes no sense.

Data Collection and Processing Phase

The actual data collection was carried out by the researchers with no assistance from
industrial partner. In this subsection we highlight measures from the most weighted
categories.

Measures for Architecture
There are three measures in this category. Gnome’s unweighted ranking for this
category is 5.

• "Are there any third party plugins?": Gnome goes easily beyond the limit for
maximum score, which is as low as more than ten plugins. For example, site
www.gnomefiles.org includes alone plenty of software for Gnome.

• "Public API / External Service": According to [OpenBRR.org] the purpose is

to measure whether the product "allows for extensions via a public API, also
shows design for customization". Gnome is given the maximum score with
respect to this measure, since all APIs are well documented in Gnome.

• "Enable/disable features through configuration": Due to the fact that Gnome is

configurable even at runtime, it receives the maximum score also from this
measure.

Measures for Documentation
The two measure related to documentation are "Existence of various documents" and
"User contribution framework". The unweighted ranking for this category is 4.

• "Existence of various documents": This has been properly taken care in
Gnome (5 points).

• "User contribution framework": In [OpenBRR.org] the justification for the

measure is that the "best guides often come from user inputs and samples, as
feedback from people who have used the products". We ranked Gnome to the
middle ("People are allowed to contribute" ~ 3 points) in this measure. Gnome
has a wiki and user forums at gnomesupport.org. If they were filtered by
"experts" then the rank would have been the maximum.

http://www.gnomefiles.org/

 34

Measures for Adoptation
The two measures for adoptation are "The number of books at Amazon"
and "Reference deployment". The unweighted score for this category is 5.

• "The number of books at Amazon": This a clever and easy-to-calculate
measure, as it is carried out by making a power search query at Amazon.com
with query string "subject:computer and title:Gnome”. In this case the number
of books is 15, which means score 5.

• "Reference deployment": This measures that through a real-world deployment,

that the software is scalable and tested in real use [OpenBRR.org] Naturally,
Gnome is numerously adopted, but the number of users is not made public.
Therefore, Gnome is given 3 points for this measure.

Data Translation Phase

The final task is simply to compute the Business Readiness for Gnome, and
publishing the rating at BRR's www-page. Gnome’s Business Readiness is 4.3.

3.4 Lessons learnt

The Business Readiness Rating is an interesting opening towards a systematic
evaluation of open source. The version of the method we used is not mature yet, after
our trial it has been under further development. However, no new version has been
published yet.

Finding the information required for evaluating the measures took roughly two to
three working days. Moreover, we spent a half working day with our industrial
partner. Using the BRR does not require special skills. The evaluation can be carried
out by an engineer who is familiar with the application area of the software under
evaluation.

One can observe similarities between software testing and BRR-like evaluation of
OSS. In both the attention of the engineer is paid to small pieces of the system at a
time, and then this small fragment is evaluated or tested. Similarly to the inability of
testing to show that the software is error free, BRR cannot ensure the maturity of the
software, but it can give us confidence when choosing open source – like when testing
engineers find no hard flaws in a system makes the system trustworthy.

Unfortunately, we had no time to carry out the same evaluation we carried out for
Gnome for some other desktop system. It might have given us a more elementary
understanding of measuring OSS with BRR.

One problem we experienced during our trial was how to limit the system under
evaluation. In other words, which plugin projects must be considered as being part of
Gnome, and which are third party ones. This selection has a large impact to some
measurements. For example, selecting a larger fraction leads larger amount of

 35

Gnome-related discussion groups. This, in turn, leads to more alive discussion and
better measures.

We were not comfortable for evaluating all the measures. Some measures required
information that was so fuzzy, that their evaluations are simply based on educated
guesses. Moreover, the developers of some measures have had quite precise model of
utilized software engineering processes and tools. When this model is not directly
applicable to the software under evaluation, the evaluator simply has to stretch the
measure to fit in her case. On the other hand, a big amount of measures were simple
and easy to apply.

All in all, using a method like BRR is recommendable when a maturity of OSS is
under evaluation. The value is not only in the final result the method produces, but the
process itself. It gives a structured way for investigating the software product. The
final number indicating the maturity does not reveal some risks of the software. On
the other hand a small number definitely reveals that the product is not mature.

The lessons learned by using the existing evaluation methods have led us to believe
that a two-step evaluation is necessary (see Figure 8, below). The user-role and
intended use have a tremendous effect on how the software, the community and the
interaction should be approached. Not only are communities different from each
other, also the user-roles necessitate various types of analysis and involve different
types of risks.

I. analysis of
- user-role
- use-case
- business potential

II. evaluation
i) qualitative
ii) quantitative

(OBRR+)

Prospectus for
firms’
community
management

evaluation
report

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

LAUNCHING
NEW

COMMUNITIES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

OSS
COMPONENT
INTEGRATION

Figure 8. Evaluation process for different user roles.

Consequently, the first step of the evaluation should consist of identifying both the
software or softwares to be used and, crucially, the user role of the company in
question. Identifying and analyzing the user role is essential for asking the right kind
of questions and identifying the possible bottle-necks and risks in the longer run. (For
instance, the user-role dictates which sets of questions in the OBRR evaluation are
relevant and how these sets should be weighted). By doing this it is also possible to
asses the business possibilities of the use-case. So the questions asked in the first step
are: i) what software or softwares exits for the task in question and what communities
are behind these softwares, ii) how will the software be used and what is the user role
of the company (e.g., one out of the 5 presented above) and, finally, iii) what kind of
added value is sought by the OSS use (time-to-market, outsourcing, cost savings, etc.)

The second step consists of both qualitative and quantitative evaluation of the
software. The qualitative analysis is performed by answering a set of questions
assessing the risks (legal, economical, cultural, social) connected to the communities
in question. In addition, the license checker can be used to analyze the legal situation
with regard to the code. Furthermore, the communities will be classified into the ideal
types discussed above, so that suitable do's and do not's can be identified as the basis
of the management framework. The quantitative analysis may be performed by an
augmented version of the OBRR. We feel that especially in the case of high
involvement with a community the questions provided in the OBRR need enrichment
with regard to both socio-cultural and technological sustainability issues.

 36

 37

For most cases of the two low-intensity user roles, application utilization and OSS as
tools in R&D, we feel that the evaluation report produced by the qualitative and
quantitative analyses will be enough. However, in the more intensive roles, from
component integration to launching new communities, the evaluation report will be
complemented by a prospectus for community management, consisting of practical
do's and do not's, guides on best practices and long-term plans that help in organizing
fruitful co-operation.

4 PART IV: CONCLUSIONS

4.1 Management guidelines for different OSS user types

In this section, we will summarize the main results by utilizing the initial framework
of different OSS user types and the aspects of business, sociology, law and
technology.

Firstly, the business aspect is in foci (see Figure 9 below).

 38

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK INCREASES

- new
communicati

on skills
needed:
blogs,

discussion
groups

- ‘community
leader’

- new attitude
needed, e.g

living on
terms of

meritocracy
- new skill

sets:
‘community

manager’

- potential
savings +
- potential
impact on
business

model

- non-issue - non-issue

BUSINESS

Figure 9. Business evaluation needs.

Looking at the five levels of use of open source from the business perspective, the
first two ones are really non-issues from the business aspect, as it is no different from
use of proprietary software.

By the third level where you are looking at the possibilities of OSS component
integration, things start to get interesting. On the one hand you have the possibility of
savings, but on the other hand you are approaching more critical elements of running
a business where you might want to have someone to rely on e.g. product support and
upgrades.

By the fourth level things start to move to a new area from traditionally run
businesses, you might have to learn live on the terms of meritocracy vs. contracts,
new skill sets might be needed such as ‘community managers’ who handle the
relations with non-contractual partners.

Fifth level is the most challenging one, and this is where most of the failures take
place (just consider how many of the 140,000 or so projects in Sourgeforge actually

have managed to create active communities). So in launching a new community a
business needs to find first of all a compelling offer where the developer communities
want to partake in and secondly, but just as importantly, ‘community leaders’ from
within the business that help them to make sure the development stays on track with
what the company is looking for.

From the sociology aspect, the management questions will also get more problematic
when moving towards the right side of the continuum (see Figure 10).

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

SOCIOLOGY

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK INCREASES

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

SOCIOLOGY

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK INCREASES

- ... +
- “coolness”
- community

values

- sust. + act. +
- decision

making
structures

- sust. +
- activity

- the existence
of a

community
- sustainability

Figure 10. Community evaluation needs: sociology.

If one intends to use OS applications simply as they are, the main thing is to establish
that there is a community supporting and developing the software. Otherwise one is
left to one's own devices in the case that a bug emerges or that documentation or
support is needed. Using OSS as tools in R&D already implicates an interest in the
sustainability of the software. Here the questions presented in section 2.2. may help
evaluate the longeivity of the community. When we move further, the existence and
sustainability of the community are not enough. An OSS component integrator will
want to see an active community, one that is making progress.

When a company wants to actively take part in OSS communities, it is important to be
aware of the decision-making strutures in the community in question. These vary from
the semi-anarchic meritocracy of the decision making in the Linux kernel community
to the more explicit and even institutionalised structures of communities like Debian
(with its Constitution and Social Contract) and Eclipse (with a company-run
foundation). Involvement in these structures may take considerable time and effort.
Finally, when launching new communities the challenge is in understanding the
Zeitgeist of hacker culture in order to woo talented developers. Creating sustainable
community values takes leadership, consistency and a good grip on the ideological
and historical values of the developers.

 39

From the legal aspect, the typology to different user types is not as clear, as it’s
always risky to generalize legal questions. However, the risk profiles are indeed quite
different in different OSS-usage roles (see Figure 11).

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

LAW

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK INCREASES

-choose licensing
strategy

-if needed, create
a mechanism for

reliable IPR-
transfer from the

contributors

- choose patent
strategy

- keep track on
used licenses

and/or
contributors

-check license
compatibility

- check
possible up-

stream patent
disputes

-check patent interests
-is utilized code truly

OSS?

Figure 11. Legal evaluation needs.

As long as the software is used for purely internal purposes (levels one and two), the
main worry is the accidental use of proprietary software without a proper license. In
certain niche areas (for example vision recognition) software patents may be also
something that has to be considered. However, in both of these cases the difference
from using proprietary solutions from (a small) vendor is almost non-existent.

The situation chances dramatically as soon as the company distributes itself the open
source products i.e. starting from level three. At that point the different rules of open
source licenses take full force and it is essential to understand how different
components can be mixed legally. The consequences of the mistakes are also much
more direct as the distribution may now easily turn out to be a copyright violation of
commercial scale. This is even more imperative if the goal is to mix commercial and
open source components.

The risk profile does not change that much in level four and five. It may even
decrease since now the company can have much more detailed knowledge what goes
on inside a project. Establishing good legal practices (e.g. requirements who can
submit code) is much easier if one works from inside. However, if something goes
wrong with the project, the liabilities could be even worse than in single company
situation. Another thing is that politics and legal questions are often mixed in a heated
way – for example the question about the best open source license is not only a legal
choice but also very much ideological one.

Lastly, the managerial questions relevant to different user types are looked from the
technology aspect (see Figure 12).

 40

OSS
APPLICATION

UTILIZERS

OSS
AS

TOOLS
IN R&D

OSS
COMPONENT
INTEGRATION

LAUNCHING
NEW

COMMUNITIES

TECHNOLOGY

OSS CONTRIBUTION INCREASES

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

COMPLEXITY OF THE OSS MANAGEMENT FRAMEWORK
INCREASES

- One can
launch whole

platforms

- Company can
influence

configuration
practises

Tools must be
compatible
 Practises

must be open

- Potential
version and

configuration

- non-issue

- non-issue

Figure 12. Technological evaluation needs.

From technical point of view utilizing open source applications and using OSS as
tools in R&D does not differ from using their closed counter parts. The problems user
might experience are similar and the quality of the products does not correlate with
the openness issue.

The third level OSS Component Integration is the first one which matters. Having a
piece of software consisting of components which are not managed by the company,
sets challenges to software engineering processes and tools. For example, if the
development of open source components is rapid or the changes are large, then the
company is forced to use much effort for following the component development.
Namely, if the gap between the current company version and the open source version
is not minded, then the company will be in trouble in future when the new version of
the component is integrated.

If the company is in the fourth level Active Participation & Management of OSS
Communities then the company is able to impact the development practices. This
might alleviate the potential problems described in the previous paragraph. The
company must use the tools which have been chosen by the open source community.
Moreover, the practices should be open, so that they can be easily integrate the
practices utilized by the community.

Being in last level Launching New Communities indicates the maximum contribution
level in our taxonomy. In the technical sense, the company can now launch whole
platforms including the core system and SDKs for developing third party software for
the system. After the launching the company is quite dependent of the community,
and it has (at least moral) responsibility for the community.

 41

 42

4.2 Evaluation of the results and insights for further OSS
research

In this report, the main results of the OSSI research project have been presented,
forming the OSS management framework. The framework rests on three closely
interrelated issues:

• the importance to understand different community types in order to
interact successfully with/within them

• the need for appropriate evaluation tools and processes in order to
select the best alternative for software production

• the technological, legal, social and business risk management
guidelines for different types of OSS utilization

Together these issues give us the holistic view, which is needed to successfully
operate in OSS field.

The developed typology of different OSS communities and the best practices to
operate with these different community types are rather detailed and thus provide a
step forward for firms to gain a sense of manageability, or at least ability to influence,
on communities. However, the guidelines for community best practices are based on
our research of the four case communities, Eclipse, GNOME, Debian and MySQL,
thus the generalazibility of these guidelines is naturally limited.

The review of the existing OSS evaluation tools and the comparison between them,
contributes to the OSS literature, but hopefully also gives tips fir firms to select the
most suitable evaluation tool for different situations and contexts. Moreover, testing
of one selected evaluation model, the BRR, and the lessons learnt from it, may give
useful guidelines for firms when they carry out an evaluation process. Based on the
comparison of the models and the test of the BRR model, we developed a new
evaluation tool, TSOSSA, presented in chapter 3. This TSOSSA tool still needs
further development and verification through extensive empirical studies, which we
will continue in our further research projects.

The third keystone of our results, the framework of the different OSS utilization types,
served us nicely during the research. The framework helped us to better grasp the
essence of OSS business, and enabled us to provide more detailed OSS risk
management guidelines that would have been impossible without this kind of OSS
utilization typology. However, during the research we also found out, that the
framework has its own shortcomings, too. Especially when it comes to the issues of
increasing OSS management complexity. For example, one might argue that
producing your own communities is actually less work than the previous phase in the
framework in some cases, but can at first appear to be the opposite. Thus, for the
analytical purposes of the OSSI research project the framework was functional, but
for further research and practical management one should keep in mind the dangers of
making such clear-cut categories of OSS utilization types.

For future OSS studies, we argue, that the increasing use and development of OSS is
rapidly multiplying situations in which a) companies involved in OSS use and

 43

development need to evaluate an existing piece of OSS software and the project
behind the software (whether it is a volunteer community or a company driven
project) and b) a public sector utilizer (such as a school, municipality, state agency,
university) needs to make an informed analysis of and long-term commitment to an
OSS application or platform. Both of these cases necessitate the existence of readily
available and scientifically grounded evaluation methods and tools.

In particular, evaluation from the point of view of a company needs to take into
account the spectrum of different user roles and the level of involvement with the
community that these imply. Also, many companies are already familiar with the use
of OSS, and the need for a standardized evaluation method is prompted by a
continuous need to stay abreast of development. From the point of view of the public
sector, a crucial challenge is the vertical integration of various sectors working
together but having a widely varied history of ICT use in terms of legacy systems,
commissioned software and tailored integrations. Consequently, the OSS evaluation
has to concentrate on issues of compatibility, sustainability and customatization, and
the software providers can be expected to form alliances that serve these needs.

Furthermore, we argue that studies, which will take a closer look on the OSS
utilization from the different decision-making levels within organizations, would
make a great contribution to the needs of business practitioners. We have already
stated in this report, that the management challenges are different in different types of
OSS utilization, but we argue further, that the problems to be solved and issues to be
focused on, vary whether we look it from the level of a company, division, SBU,
single project, team etc.

Although many of these avenues for future research would contribute especially to
managers and companies facing the practical challenges related to OSS, a potential for
drawing up from these context related questions on to more general level of
management literature clearly exists.

 44

REFERENCES

Golden, B. (2004). Succeeding with Open Source: Addison-Wesley.

Himanen, P. (2001) The Hacker Ethic. New York: Random House. Karim, R Lakhani
& Robert, G. Wolf, 2005. “Why Hackers Do What They Do: Understanding
Motivation and Effort in Free/Open Source Software Projects,” at Feller, J et al. (edit).
Perspectives on Free and Open Source Software. Cambridge, Massachusettes,
London: The MIT Press.

Lash, S. (2002). Critique of Information. London: SAGE. Lawrence Lessig, 2004.
Free Culture. London: Penguin.

Levy, S. (1984). Hackers. Heroes of the Computer Revolution. London: Penguin.

Mikkonen, Teemu., Vadén, Tere. & Vainio, Niklas. 2007. The Protestant ethic strikes
back: Open source developers and the ethic of capitalism. First Monday, volume 12,
number 2 (February 2007)

OpenBRR.org. (2005). Business readiness rating.

Optaros Inc.
http://www.optaros.com/en/publications/white_papers_reports/open_source_catalogu
e_2007

QSOS http://www.qsos.org/

Raymond, E. (1999). The Bazaar and the Cathedral. Sebastopol: O'Reilly.

Reidar Conradi, Amarjit Singh Marjara, Øivind Hantho, Torbjørn Frotveit, and Børge
Skåtevik, "A Study of Inspections and Testing at Ericsson, NO", a rewritten edition of
the paper presented at PROFES'99. Oulu, Finland, June 1999.

Woods, D., & Guliani, G. (2005). Open Source for the Enterprise. Managing Risks,
Reaping Rewards. O'Reilly.

http://www.qsos.org/

 45

APPENDIX 1: Open Source Business Reflections

Mikko Puhakka

Mikko.Puhakka@gmail.com

Jukka Ala-Mutka

Introduction

As open source and open source business is rapidly becoming mainstream as
witnessed e.g. by the latest estimates from IDC, Gartner and seemingly most analysts
it felt that it was an appropriate time to try to get some feedback from entrepreneurs
and experts in this space about some of the do’s and don’ts they have learned over the
years building open source businesses. All the answers can be found collected in
Mikko Puhakka’s blog at http://blogit.digitoday.fi/opensource/2007/06/15/ , but
here are few select ones.
Reading through them one will find that while some reflections reflect very traditional
business wisdom, others especially building and dealing with the open source
communities and transparency in open source bring new elements to building and
running a business.

Expert Comments from summer of 2007

‘’A superb team is a must in all start-ups. The special thing with open source
startups is that they may have a history as an open source project before
becoming a commercial business. The team must understand how to
master this evolutionary transition. ‘’

‘’The strength of open source lies in massive participation by users
worldwide. It takes special dedication and skill to build an architecture of
participation.’’

‘’ It’s dangerous to think that open sourcing something will solve all
problems. It probably won’t. Open source accelerates what would happen
anyway. If you have a crappy product, it will die sooner if you open source it.
If you have a great product, it will succeed sooner if you open source it.
Open source also is not a business model in itself. You have to figure out
the business model as a separate exercise�(there is a handful of good
alternatives).’’

Mårten Mickos, CEO MySQL

‘’Your community of users is an incredible asset to spread the word. It's not
just about people using your software for free and telling other people about
it, but rather the fact that developers will start taking it to work and it will
sneak in under the floorboards. This is how the PC revolution started. It's

mailto:Mikko.Puhakka@gmail.com
http://blogit.digitoday.fi/opensource/2007/06/15/

 46

why Visual Basic is still huge. It's how the Linux revolution happened. So
too with MySQL. And then the CIO discovers it and they need to treat it as
a proper product asset just like any other asset on which the business
depends.’’

‘’Understand your value proposition and your core competency, and choose
your license wisely: if your entire core competency that enables your core
value proposition to your customers is embodied in the software, DON'T
publish it in such a way that you give away the company. I have seen a
situation in the security world where the software solution was everything. If
they had made the software available under the wrong license, they would
have essentially given away their future growth. Just because you published
the source code does not mean the world is going to work for you for free.
It's been a while since we saw this level of naivety with the original Mozilla
launch from Netscape, but I'm betting there are still a lot of business people
that don't understand open source software economics that still have old
ignorant opinions.’’

Stephen Walli, an Open Source expert

‘’Open source is the natural step in the evolution of software development
within an Internet-centric environment. Or put it another way, it is software
development 2.0. Thanks to collaboration through Internet communities it is
possible to challenge large well-established companies with a small team of
enthusiasts locked in a garage in the most remote corner of the world. It is
possible to do so with very tiny budgets that any average geek can afford. It is
also possible to accelerate it with relatively small seed investments, not only
from VCs.’’

Ignacio Correas, CEO of Warp

‘’The relationship that open source projects and vendors have with their
community often extends beyond - sometimes far beyond - the traditional
buyer/seller interaction. Like any serious relationship, though, it requires
more work than one that’s shallower in nature.

We recommend asking yourself the following question on a regular basis:
how can you better serve your community? What can you do to help? Not to
the detriment of your own enterprise, of course, but there’s always more
that can be done. Maybe you can provide office space for meetups. Maybe
some pro bono legal counseling. Maybe you can use your contacts and
network to try and resolve issues. Maybe you can employ developers to
work on a project that’s aligned with your business interest. Maybe you can
sponsor travel for a developer to attend a conference.

Look around, you’ll find something. Don’t think of it as altruism, if that makes
you uncomfortable: think of it as pragmatism. It’s kind of a truism that you
get out of relationships only what you put into them; in my experience, open
source is no exception.’’

 47

‘’Do Not Forget Questions of Project Governance: In the world of open
source, license choices often get an undue share of the credit or blame for
project success or failure. Though I do not subscribe to the notion that the
license is unimportant - I think indeed it matters very much - project
governance and the implications of that governance are at least as
important if not more so.

The choices made with respect to governance (and the tools that support it)
can impact whether or not you’ll be able to accept outside contributions
(thus amortizing the cost of development across external parties), the
volume and quality of contributions you might expect back, the relative
strength and goodwill of your community, the adoption rate you can expect
to see and so on. Its reach is, in other words, quite profound, and yet it can
often be an afterthought following licensing conversations and choices.’’

 Stephen O’Grady, Analyst at Redmonk

‘’Focus on real value. The value of software bits is going to zero, if it's not
there already. The worst thing a business can do is to put its head in the
sand and pretend that the world hasn't changed. It has. Of course, like the
real estate market in Florida (either in the 1920s or the present era), or the
Internet Stock bubble, there is money to be made by people who are luckier
than they are smart. But if you know that the value of something is going to
zero, why buy in with the belief that you can find somebody more stupid
than you before the value does go to zero. The freedom that comes from
knowing that the bits are worth nothing promotes one to focus on what is of
real value:

 Is it helping customers increase revenues?
 Decrease cost?

 Solving the business problem one is paid to solve?

 Delivering on time and on budget?
 The ability to be more flexible and responsive than your competition?
 Delivering a quality product?

Creating the kind of customer loyalty that enables new problems to
be solved?’’

‘’The goal of Sarbannes-Oxley is transparency, and yet many provisions
and requirements of that act are so burdensome that the benefits of
transparency are lost in a quagmire of reporting requirements. By contrast,
open source software provides a natural transparency that can become
pervasive. Open source can encourage institutional transparency by acting
as a constant reminder that secrecy, more often than not, is the refuge of
the incompetent. Again, many entrepreneurs and many companies live in a
constant state of denial, be it about their employees, their products, their
quality, or their strategy. Sufficient transparency encourages one to actually
address problems rather than putting energy into hiding them.’’

 48

 Michael Tiemann, President of Open Source Initiative

‘’Open Source users are more open to new and innovative functionality and
they are downright eager to participate in the end stages of its development.
There is a fine line to walk here, but essentially you can usually release
much earlier betas of your product and get a wider set of usage scenarios
vetting the quality of the software much faster then in the proprietary world
where software hides behind a dark curtain of mystery until its released. Of
course, this is not to be abused! If your betas are inherently broken the
community will shun them. Ultimately if used right, the company and the
community benefit from faster time to market for product development.’’

‘’Although surprisingly common, if you base your software business model
on services alone for revenue, or even greater then 25% (completely
arbitrary number), you are in trouble. One, its going to take you a LONG
time to get critical mass of deployments. Two, its going to constrain your
growth to hiring an army of professional services who you trust to be
consistently as smart as you and as versed in your project. Three, its likely
going to slow or stop your ability to generate real improvements to your
project. Fixes may happen in the context of specific use cases but real
innovation and extensions are going to be highly subject to a slow period in
services… during which you aren’t making any money or growing! Not to
mention you will likely be closer to airline staff then your own family,
because of the rigorous travel schedules.’’

Hyperic CEO Javier Soltero

‘’Do something revolutionary: software is more fun and more dangerous (to
the other guy) when it is really revolutionary. Not merely innovative- ‘we
want to do something new’ but revolutionary - ‘we want to actively overthrow
the old.’ We are here because we revolutionized the method of software
production, but to continue to grow, we have to start revolutionizing other
things too Be the Wii not the PS3. If you really want to catch them by
surprise, be a revolutionary using open source, but not in software. The
people outside software (well, except for poor Encyclopedia Britannica)
don’t yet realize what is coming for them.’’

‘’Don’t let your community’s fears drive your feature choices: if you’re a real
open source company, you’ll have very direct contact with your customers.
This is normally a great thing, but when you make a decision they don’t like,
particularly if it scares them, you’ll hear about it loud and long and clear. If
you let that negative feedback drive your decision making, you’ll never grow
beyond the needs of those people. You must not be afraid to piss them off
when you truly believe that a design decision is for the broader good.
Remember, the pissed off people scream- the happy people just go on with
their lives. So you can’t just say ‘more people screamed than thanked us’-
that isn’t a useful metric.’’

 Luis Villa

 49

Conclusions

In building an open source software business you need the same basic elements as in
proprietary business: a great team, good value proposition, good project management
and so forth.

By open sourcing a product a bad does not turn into a good one, so there is no magic
in it. General consensus seems to be that the value of the actual software or bits is
approaching zero whether you are providing open or closed software. So you need to
find value and revenue from services, support contracts, providing solutions etc.
Open source does provide a way to challenge incumbents, but it has to be something
more than just opening up the code, that does not provide enough of disruption.

To cause disruption and create successful business you need to learn to create and
compel the developer communities on something that is of value to the business, some
of these things might seem very unorthodox to business leaders but in order to
succeed in open source business, the skills are necessary. You have to e.g. learn what
are meaningful ways of contributing back to the community that is working for you,
otherwise, why would they build you a business for free?

While these commentators certainly are pro-open source the fact that they are either
running or working with successful open source companies certainly brings credibility
to their statements.

 50

APPENDIX 2: Introduction to License Checker

Case Study in Software License Management: Open Source
License Checker Tool

Jing Jing

jing.jing@hut.fi

Sakari Kääriäinen

sakari.kaariainen@hut.fi

Abstract
Open source software, as part of the fast growing digital economy, possesses unique
features from both business and legal aspects. This paper describes the legal issues of
open source including open source licenses, associated legal risks and management of
these licenses as well as solutions for ma naging the license compliance issue in
open source software. In the risk management solution section, we discuss the
existing commercial license compliance solutions and describe an open source
solution for managing the open source license compliance issue.

1. INTRODUCTION

Since the 90s, digital economy has demonstrated a rapid growth along with the fast
technology development. In the 21th century, we see that the digital world is gradually
integrating into our substantial world and becoming an important part of the
environment where we work, play, and live everyday.

1.1. Background

In the digital economy world, there seems to be endless amount of technology
innovations and business opportunities. It becomes more and more evident nowadays
that the technology innovations are recognized as core competence of companies,
which the business is based on. What is tightly linked with the technology innovation
is intellectual property, which has become the intangible assets for individuals and
companies these days. IPR (Intellectual Property Rights) defines the rights that allow
people to own their creativity and innovation in the same way that they can own
physical property [1]. In the recent years, it has been widely adopted as a business
strategy for individuals and companies to preserve the value of these creations from
unauthorized use and provide the incentives for further development.
When mentioning about IPR in the software industry, the most common term we hear
about is software license. Software license is basically a form of contracts, which
defines the permission to perform some act otherwise would be harmful [2]. No matter
if the software is proprietary software or open source software, licensing issue is
equally important for both. So much effort has been paid on the license issue related
to proprietary software in the recent years. For those not familiar with the concept of
open source, people presume based on the name and their experience via using open
source that the licensing issue is not as important as that of proprietary software.

mailto:firstname.lastname@domain

 51

However this is a misguided perception of open source. As the popularity of open
source is growing fiercely, open source licensing starts attracting attention from both
individual and enterprise audiences.
Licensing of proprietary software and open source software stands on substantial
different grounds. The fundamental purpose of open source licensing is to deny
anybody the right to exclusively exploit a work. [3, page 4] This is in principle
contradictory to proprietary software licensing where the users are not allowed to
make copies for others, derive the work or authorize others to do so. Open source not
only allows redistribution of the work, it also promotes modification of the original
work.
However open source licensing, which in a sense is no different than other type of
licenses, also poses certain constraints. The most known limitation is that under
certain licenses, the redistribution as well as the derivative work must be under the
same license as the original work. One of the key risks associated with this limitation
is that large open source software packages may include components whose licenses
terms are incompatible with the rest of the package [4].
The fundamental question is – how can we manage the open source licensing and its
associated risks so that we can make better use of open source software?

1.2 Objective of the Study
As open source has been nowadays widely adopted both by enterprise and personal
users, the attention to the risks of open source licensing has been rising. The
motivation of the study is to demonstrate our understanding of the open source
licenses and their related legal risks from the license compliance perspective. The
objective is to present existing license management solutions and introduce an
alternative solution developed in a research project in Helsinki University of
Technology.

1.3 Research Questions
Based on our motivation and objective of the study, we aim to answer the following
research questions:
What are common open source license types?
What are the risks related to open source licensing?
What are the existing commercial solutions to manage risks in regards to open source
licenses?
What is the open source alternative for managing license compliance issue?
What is yet needed to study and solve?

1.4 Scope of the Study
This study combines two hot topics in the present world of digital economy: open
source and license management. Open source is a rather wide area to discuss,
however we aim to discuss on the license management aspects of open source. In this
paper, the key focus of the discussion is the risk management of license compliance
issue and how tools can support this management process.
We discuss the current open source licenses and commercial tools, which automate
the software license management process. More importantly, we want to introduce our
research result – an open source license analysis tool “Open Source License Checker”,
which could be useful in the license risk management process.

 52

1.5 Methodology of the Study
In the beginning, we present the literature review of existing open source licenses and
the associated legal risks to manage open source licenses. Then case studies on
commercial license management software are demonstrated. At the end, we present
our open source solution developed throughout our research project aimed to manage
the open source licenses.

1.6 Structure of the Paper
Chapter 2 provides an overview of the open source licenses, the associated problems
and risks, as well as the existing commercial solution for software license
management.
Chapter 3 introduces Open Source License Checker – an alternative open source
solution to manage the open source licenses. The feature of the application and the
technical description is included in this section. The future improvements are also
included.
Chapter 4 presents and summarizes the research results in this paper. Based on this
knowledge, additionally we open the discussion on the future of the open source
licensing and risk management issues.

2. OPEN SOURCE SOFTWARE LICENSING

2.1 Overview
The spirit of the open source software – openness and freedom has great impacts on
how the open source software is developed, managed, and licensed. The most
noticeable difference to proprietary software is that open source allows free
redistribution of the program and modification to the source code, which is strictly
forbidden by the proprietary software.

By September 2006, there are 58 open source licenses approved by Open Source
Initiative [5]. In the next section, we introduce briefly the types and the key
characteristics of commonly used open source licenses.

2.2 Open Source License Summary
Based on the description above about open source licenses and according to [3, page
34] there are two main classes of open source licenses: BSD-style licenses and GPL-
style licenses.
MIT (or X11) license is probably the only open source license, which poses almost no
restrictions to the licensees in using the work; whilst BSD imposes certain terms on
the distribution of the original and derivative works. However, a distinctive feature of
BSD-style licenses is that they allow the code to be “closed”; that is modified and
published under a proprietary license without including the source code with the
binary program. Some view this as a contradiction to the idea of open-source
software, but the benefit of allowing commercial derivations is that the software might
have wider influence. For example TCP/IP stack that was part of BSD Unix became
the basis of Microsoft's stack implementation. It's possible to combine BSD license
with almost any other source license. MIT license is very similar to the BSD license.
Apache license can also be combined with proprietary software. The BSD-style
licenses are suitable for situations when software is wanted to be widely used even as
a part of proprietary software.

 53

Another major class of open source licenses are GPL (GNU General Public License)-
style licenses. The main difference between GPL-style and BDS-style licenses is that
GPL allows derivative works to be distributed only with GPL license. No changes to
the license text itself are usually allowed. This makes it difficult to combine GPL-
licensed code with proprietary code (although it might be possible if open source
components are not statically linked with proprietary components). GPL-style licenses
are not always compatible even with other open source licenses. LGPL (GNU Lesser
General Public License) and Mozilla Public License work in a similar way.

2.3 License Compliance Issues and Risks
In this section, we use GPL license as an example to explain the license compliance
issue and risks.
A lot of discussion has been on-going regarding the license compliance issue with
open source software. One of the well-known case is when D-Link infringed the GPL
licensed Linux kernel code and other programs which are running in a network
attached storage (NAS) product. [6] Many more GPL violation cases have been
uncovered afterwards. This violation is rooted to the nature of the GPL license which
does not allow the redistribution and modification of the original code to be under
other license than GPL itself.
Based on the limitation with GPL-style license, it is obvious that there is a license
compliance problem not existing only between the GPL licensed software and
proprietary software, but happens also amongst open source licenses themselves.
According to Rosen [7], open source code licensed under one approved reciprocal
license may not be used in a project licensed under another approved reciprocal open
source license. A typical example would be that a GPL licensed software has been
modified and redistributed under BSD license. This implies that this software under
BSD license can be even changed later to proprietary licensed software. This is
specifically against the initiative of the GPL license.
License problems can also happen when code under proprietary license is included
into code under open source license. This not only puts the open source community at
risk, but could also cause significant damage to the proprietary software company
who owns copyright or patent to the original code. Not mentioning the damage fee
ordered by the court to pay up, the cost of hiring a lawyer could already bring very
bad damage to most small to medium open source communities.
It is clear that license compliance issue introduce legal risks to both open source
society and proprietary software companies. According to the risk management, there
are several action levels to handle risks. The best choice is always try to avoid them.
However this is not always easy and possible to achieve per say. In most of the cases,
we confront and minimize the potential risks and try to manage them through time by
adjusting our actions and decisions. The worst case for risk management is the
contingency management. In this paper, we only focus on discussing how to avoid,
confront and minimize risks, so that we could avoid the contingency management
process.

2.4 Commercial software for license analysis
In this section, we present two commercial software license management tools with
the functionality to manage license compliance. We also discuss strengths and
disadvantages of these solutions.

 54

2.4.1Black Duck1 Software Compliance Solution
Black Duck, a private held company, was founded in year 2002. It is currently a
successful software company offering commercial software compliance solutions for
enterprises.
Black Duck has two key products. exportIP is a software which automatically
manages encryption in software-based products and comply to the US export law. The
protexIP product provides license compliance solutions for software companies to
manage how software are created, managed and licensed. In this paper, we only focus
on studying the license compliance solution - protexIP. The encryption management
solution is out of the scope of this study.
The protexIP solution is primarily based on Code Print technology which compares
the developed software code against thousands of other software projects. This is a
software program code comparison based license compliance management tool.
KnowledgeBase is a database in which protexIP stores thousands of open source and
commercial software projects and it can be constantly updated. Based on this core
technology protexIP implemented a series of comprehensive license compliance
features.
Black Duck protexIP has well established its position in the software license
compliance market. Many companies have chosen this solution for managing its
software products. However, Black Duck does not provide a trail version of the
application which allows potential users to get an initial experience on the software.
In addition as it is a commercial closed source software product, the matching and
analysis logic has not been published for users to verify how the license matching and
the code checking are implemented.

2.4.2 Palamida
Palamida2 is a company launched in 2003. They currently offer two software
products: IP Amplifier3 and IP Authorizer 4in addition to auditing services5.
IP Amplifier is a software product for analyzing license information in source code
packages. According to Palamida's webpage and the IP Amplifier datasheet6 major
features of the product are:
− A monthly-updated database that contains license and copyright information, code

snippets, binary files, java namespaces and product descriptions of 750000
commercial and open source projects. It's not specified how much information
about an average program is actually stored in the database.

− Multiple scanning methods for identifying third-party software components

− Source code detection: code snippet matching against the database (works
with any programming language)

− Binary file detection: digest-based matching of binary files against the
database

1 Black Duck home page – http://www.blackducksoftware.com/
2 Palamida company home page: http://www.palamida.com/
3 Palamida IP Amplifier description: http://www.palamida.com/products/ipamp/overview
4 Palamida IP Authorizer description: http://www.palamida.com/products/ipauth/overview
5 Palamida auditing services: http://www.palamida.com/services/audit
6 Palamida IP amplifier data sheet: http://www.palamida.com/pdf/IPAmplifierFall2006.pdf

http://www.blackducksoftware.com/
http://www.palamida.com/
http://www.palamida.com/products/ipamp/overview
http://www.palamida.com/products/ipauth/overview
http://www.palamida.com/services/audit
http://www.palamida.com/pdf/IPAmplifierFall2006.pdf

 55

− Namespace detection: Java and C# namespace matching against the database

− License detection: license text snippet matching against the database

− Copyright detection: detection of copyright information inside source files

− User specified search: detection of user-specified text inside source files

− both rich client and web client

− integrated scripting language

− exposed API's (programming interfaces)

− compatible with ANT, Make and “all major source code management systems”
(it's not specified what source code management systems this actually means)

Unfortunately no demo version of the product is available so these claims could not
be verified. Compared to the OSLC tool, IP Amplifier seems to contain much richer
set of functionality but it's impossible to evaluate how well the actual license
detection works compared to the OSLC without practical experiments. No details
about the matching algorithms are given in the Palamida's webpage. Also no further
information was found in the web or in the scientific literature.
System requirements of IP Amplifier are very steep: recommended specifications for
the server component are 300 GB disk space and 12 GB memory. For rich client
application 2 GB memory is recommended. This should be compared with OSLC
program that doesn't require any server component and runs fine with machine having
512 MB memory.

3. OPEN SOURCE LICENSE CHECKER TOOL

3.1 Overview
Open Source License Checker (OSLC) tool is one of the key deliveries of a research
work done in Helsinki University of Technology for a research project - managing
Open Source Software as an Integrated Part of Business (OSSI) [8]. This project
involves 4 Finnish universities and 10 companies, and is primarily funded by Tekes –
National Technology Agency of Finland.
The initiative of developing this tool is to provide a unique and reliable solution for
managing open source software license compliance which does not yet exist in the
market. The Open Source License Checker analyzes license information by extracting
all license information from open source packages, comparing them to the original
license text from the license database, and summarizes the overall license information
from the package.
Differentiated from the existing commercial license compliance software, the Open
Source License Checker is an open source implementation under GPL license. Most
of the license compliance software is under commercial license, which is not
affordable for many open source development projects as not many of them are profit
driven. The open source license checker offers an alternative, economical yet reliable
contribution to the open source society to address the software license compliance
issue. Moreover, the open source approach provides end users the visibility and
freedom to check out and modify not only the implementation of the code, but also
the license database whenever needed.
The objective of this is to provide both the management and the development a
solution for managing open source licensed software. From the management aspect,
the tool can be used to find the licenses existing in the package, the matching to the

 56

original license text and the incompatible license information by presenting the result
of the analysis work from the whole software package. The management could use
this information for instance to choose the best suitable software packages for their
software development and also to decide the type of license for the software under
development. This could directly avoid the legal risks even when the software
development starts. While during the software development, engineers can use the
tool to check which files in the source package are problematic and take corrective
action to make sure that all source code is license compatible.
The current stable version is stored in sourceforge.net [9]. It was developed and
managed by researchers and students from Helsinki University of Technology.

3.2 Features
The Open Source License Checker is implemented in Java and has passed the testing
on major operating systems, such as Windows, Linux and Mac. It provides both
graphical user interface as well as command-line user interface.
Common features provided by both interfaces are:

- Access to zip, jar and tar packages as well as file system directories

- Identifying open source licenses from:

o Java, PHP, and C/C++ source files

o Linux kernel source files

o “LICENCE” files

o “COPYING” files

- Indicating the license matching confidence against the original license text

- Highlighting the matched license text

- Displaying source code import references

- Link to import files (only in Java)

- Displaying the license conflicts

- Identifying license exceptions & forbidden phrases

- General summary and report on the source files in the package

- File filtering in source package based on different criteria

The GUI version has the following additional features:
- Source file print support

- Browse history support

- Complete Help functionality

3.3 Business Benefits
Blackduck’s protexIP and Palamida’s IP Amplifier for managing software license
compliance both demonstrate a set of comprehensive features. As license
identification is the essential feature and can be recognized as the core competence of
the software, the reliability of the identification is extremely critical. However as both
products are proprietary software, it is hard to verify the core technology. OSLC,
under GPL license, not only offers free software but also free source code for users to
verify how the core technology is implemented. In addition, users are allows to

 57

modify and improve the program based on their own needs under the GPL license
terms.
From the budget aspect, both commercial products could pose a financial challenge to
small to medium size companies. On the other hand, most of these small companies
need to deal with software license issues in their management and development, and
do not afford time, resource, and money to lawsuits. OSLC in this context can offer an
alternative solution to the commercial product for managing software license
compliance issues.
Most of the time, when talking about software licenses, we think that it is a task
related to lawyers. The reason is that software licenses are written in legal languages
and it is indeed difficult to read and understand. Therefore it is better to be handled by
a lawyer. However in a software company, this is not the case. For the business
managers and software engineers, their priority is to develop and extend business, but
licensing is never an issue they can avoid. The OSLC program could provide the
following benefits for both the management and the development:

- To identify and present the license analysis result from a software source
package

- To select open source software for development

- To avoid legal problems and lawsuits

- To manage software package with multiple OS licenses

- To support decision making for OS software license

- Work more efficiently:

o To save managers’ and engineers’ time from going into details in the
source package

o Managers and engineers do not have to be open source license expert

3.4 User interfaces

3.4.1 Graphical user interface
The graphical user interface is presented in the figure below.

Figure 1: OSLC overall package license information

Figure 2: License information from a source file

 58

Detailed information about the GUI can be found from the OSLC user manual in the
installation package, see OSLC project page in sourceforge.net [9].

3.4.2 Command-line Interface
The command line interface is presented as below:

Figure 3: command line options

>oslc2cli.bat -s test_sources\full_matches > log.txt
lgpl_2_1_s.java: lgpl-2.1-s
lgpl_2_1_l.java: lgpl-2.1-l
bsd.java: bsd
apache_2_0_s.java: apache-2.0-s

Source files: 4
License files: 0
All files: 4
Distinct licenses: 4
Conflicts (ref): 0
Conflicts (global): 2

License Count Incompatible with
apache-2.0-s 1 lgpl-2.1-l
bsd 1 lgpl-2.1-s
lgpl-2.1-l 1 apache-2.0-s
lgpl-2.1-s 1 apache-2.0-s

 59

 60

3.5 Matching algorithm

3.5.1 Overview and list of terms
The most important requirement for this application is reliable identification of
licenses. This chapter presents an overview of the license matching algorithm used by
the program. Implementation details are not addressed here; please refer to the
technical specification of the OSLC program for implementation issues. In this
chapter the following terms are used:

Fragment part of the source or license text defined by the line and character

positions of the fragment's start and end point

matching fragment fragments in both source and license text that have identical
alphanumeric characters

Match a license found in the source text. represented by one or more
matching fragments.

true positive match match that is correct in a sense that the source text actually contains
the matched license (or parts of the license)

true negative match no match is found for a license that is not included in the source text

false positive match match is found although the source text doesn't actually contains the
license

false negative match no match is found although the source text actually contains the license

Basic goal of the algorithm is to determine if the source text contains text from any of
the licenses in the program's license database. The algorithm can be divided in two
major parts: fragment detection and match filtering.

3.5.2 Input
Input of the algorithm is the comment text of a source file (plain text, language-
specific syntax and has been removed, line numbers and start column positions are
retained) and a list of all license texts in the license database.

3.5.3 Fragment detection
For each source text and license text pair a list of matching fragments is needed.
Fragments are identified by using a modified version of the algorithm invented by
Paul Heckel[10]. This algorithm is similar to the algorithm used in the popular unix
program diff.
Paul Heckel's algorithm works by identifying unique words (case-insensitive, non-
alphanumeric characters are ignored) in both source and license text. After the unique
words have been identified, our algorithm uses this data to find matching fragments.
This is done by expanding the fragment from a sequential pair of two unique words
both backwards and forwards until a difference between source and license text is
found. If no unique words are found but there are multiple instances of each unique
license template word in the source text, it is assumed that the license text has been
duplicated (it appears more than once in the file). In these cases only the first
instances of words are taken into account.

 61

3.5.4 Match filtering
Matching fragments found in the fragment detection phase usually contain partial
matches from many different licenses. Often the fragments are very small (maybe
only a few words) and the fragments can be overlapping (same word in the source text
belongs to different fragments in different licenses; note that a given word can't
belong to different fragments of the same license). It is clear that many of these
matches are false positives. The goal of the match filtering is to remove these false
positives while in the same time retaining true positives.
In the current version of the algorithm only the longest fragment and the total length
of fragments for each matched license are considered. If length of the longest
fragment is below 10% (of the number of words in the license) or if length is below
10 words the match is rejected. This threshold was determined experimentally and it's
configurable (higher numbers lead to more positive matches; both true and false).
Overlaps are removed by scanning through the longest fragments in order of fragment
length. If fragments overlap, the shorter fragment is cut so that no words overlap
(overlap detection is done based on word positions in the source text). If length of the
cut fragment falls below 10/10 threshold, the match is rejected. Motivation for overlap
detection is that many licenses are simply variations of some other license with long
identical segments; without overlap detection there would be many false positive
matches.
In the special case of two identical longest fragments that still belong to different
licenses; the match with higher total number of matched words is retained. This can
happen if there are two licenses with nearly identical license texts.

3.5.5 Output
Results of the matching algorithm are presented in graphical user interface or printed
to the standard output. For every file a list of found licenses is reported along with
match confidence (percentage of words in the license text found in the longest match
fragment) and match position.
The program is able to detect if the original license text has been modified; in these
cases the match confidence is below 100% (confidence is rounded down so 100%
means exact match with the original license). However the program is not able to
detect additions made before or after the original license text unless these additions
contain forbidden phrases or parts of some other license.

3.5.6 Advanced matching features

Forbidden phrases
Certain short phrases (such as Shareware or All rights reserved) that might have legal
significance are detected in the source text. A forbidden phrase match is reported only
if all words of the phrase are found. A simplified algorithm is used to find forbidden
phrases.
Some forbidden phrases are included in certain licenses; if all licenses found in a file
contain the identified forbidden phrase it's not reported to the user. Internally
forbidden phrases are represented as a special license type.

 62

Modules
Some licenses contain optional additions; for example the GPL license can be
combined with Classpath-exception7. These exceptions are represented by the
program as a special license type; they are matched using the standard algorithm but
they are reported only if the parent license is also found in the same file.

Free-form fields
Some licenses contain special fields that can contain any text (such as names of the
authors). These field would break the standard matching algorithm if not taken into
account. Free-form fields are defined in the license metadata; matching algorithm is
able to detect these positions without breaking a match. Any text stored inside free-
form fields is saved and presented to the user in the graphical user interface.
There are some restrictions on free-form fields: they cannot be located in the start or
in the end of the license (otherwise matching algorithm wouldn't know where the field
starts or ends). Also it's not possible to define two free-form field in a row; for
example it's not possible to define: <year> <name>, instead <year_and_name> must
be used.

Linux kernel support
In the Linux kernel it's possible to specify a license by using MODULE_LICENSE
macro. For example it's possible to specify a GPL license by including the following
line to the source code: MODULE_LICENSE(”GPL"). Because it's not part of the
source file's comments, it can't be found by the program's standard approach of
scanning only the comment text.
Linux kernel is handled by the program as a special case by using a simple exact
matching algorithm to detect these macros. If macro's argument doesn't indicate any
known license, it's handled as a forbidden phrase.

Correctness of the matching algorithm
Algorithm's correctness was evaluated by running it against a set of source packages
downloaded from SourceForge [9]. Our impression is that the algorithm works well in
a sense that it rarely produces false negative matches (assuming that the
corresponding license is defined in the program's license database). Also the
algorithm doesn't produce many false positives unless a license has many
modifications to it's template. When a license has modifications, the algorithm picks
the longest fragment while other fragments might be reported as different licenses.

It would be useful to have a qualitative analysis of the algorithm's correctness. For
example one could download a large number of random code packages from the
sourceforge and measure how often the algorithm performs correctly

7 The reference to Classpath-exception: http://www.gnu.org/software/classpath/license.html

http://www.gnu.org/software/classpath/license.html

 63

3.5.7 Future improvements to the matching algorithm

Multi-fragment match filtering
At the moment, only the longest fragment is taken into account when calculating
match confidence and when filtering overlapping fragments. All fragments should be
taken into account, not just the longest one. This would not be a major modification to
the algorithm since all fragments are already detected in the first phase of the
algorithm.

Keyword-based matching
As an alternative to the whole-text matching, it should be possible to specify certain
keywords (such as license name), that could be used to identify a license. This
approach would increase the number of true positive matches in cases when the
license text is heavily modified and if the keywords are chosen carefully it should not
increase the number of false positive matches. Unfortunately keyword-based
matching is unable to detect modifications to the license.

Semi-interactive matching
The user could interactively highlight parts of a source text and mark them as
belonging to a specified license. The program would take this information into
account and re-evaluate other files. This approach is motivated by observation that
license information is often simply copied to different files; in most cases this user
intervention would quickly reduce the number of false positive matches found in the
source package.

3.6 Architecture
The program has a modular structure; for example support for different source code
languages is implemented in the sourceparser module (a java package) that has well-
defined public interface. This way it's possible to add support for new languages
without extensive modifications to existing code.The modules are:

Module Main responsibilities

Checker Logic that connects other modules together. Programming interface
for the graphical user interface. Implements the command line
interface.

Filepackage File access from file packages. Implemented for jar,zip,tar and standard
file system.

License Representation of license text and metadata. License database creation
from text files.

Matching Implements the matching algorithm.

Sourceparser Extraction of comments from a source file and detection of references
between source files. Implemented for Java,C++ and PHP.

Gui Graphical user interface

 64

A repository module was also defined in the initial architecture. It was responsible for
accessing source code repositories (such as CVS) but no implementation was coded.
Command line interface was planned to be implemented in separate module but at the
moment it's located in the checker module.

Basic sequence of actions for the program’s standard operation is:

− read the license data and metadata from text files
− present the GUI to the user
− access the source package specified by the user
− extract comments from source files
− run the matching algorithm against source files
− present results to the user

3.7 Future improvements
The program does implement most of the functionality that was planned at the start of
the development project. It's possible that development of the program continues in
some form in the future. There are many features that could be added to the program,
here are some examples (improvements to the matching algorithm have been
discussed in chapter 3.4.9).

3.7.1 Support for Creative Commons licenses
Creative Commons [18] is a family of licenses aimed for licensing media content.
Different versions of the CC license have different combinations of four basic
conditions:
− Attribution: name of the author must be mentioned

− NonCommercial: content can be used only for noncommercial purposes

− No Derivative Works: only verbatim copies are allowed

− ShareAlike: content can be distributed only under the original license

CC licenses can be expressed in three different formats:
− Commons Deed (human-readable code)

− Legal Code (lawyer-readable code)

− Metadata (machine readable code)

CC licenses can also be applied to different file types, for example:
− HTML pages

− RSS feeds

− MP3 or OGG music files

− XMP-enabled documents

At the moment, OSLC program only supports software licenses, but it would be
possible to extend the program to include support for creative commons licenses.
Since CC licenses can also be expressed as RDF/XML formatted metadata, an XML
parser would be needed to read the information. This parser could be implemented as
a sourceparser module. Since metadata doesn't contain the actual license text, exact
matching algorithm against the license description URL's could be used to identify the

 65

license. Filepackage module implementations would be needed for each of the
supported file types.
Since CC licenses are often embedded in web pages, it would be useful if the user
could enter an URL instead of a local machine filename. This would require changes
to the main program and also a new filepackage module. CC licenses contain multiple
language versions; it's not certain if the translations are legally equivalent. If they are
not equivalent, they should be represented as completely different licenses. License
naming conventions would need to be updated to take into account language versions
in a consistent way.
Support for other media licenses (such as the Free Art License) could be added in a
similar way.

3.7.2 License database editor
It should be possible to edit the license database with GUI without modifying any text
files.

3.7.3 Optimizing random access
At the moment accessing a single file from a compressed package is slow. Random
access could be accelerated by using temporary directories or multiple iterators.

3.7.4 Repository support
Support for CVS and Subversion repositories was planned but not implemented. It
should be possible to specify relevant repository parameters in the GUI.

3.7.5 Package recursion
Source packages might contain other packages inside the top-level package (such as
nested jar files). At the moment only the top-level package is processed.

3.7.6 XML output
The program should be able to output xml for easy integration with external systems.

4. SUMMARY AND DISCUSSION

4.1 Results
In this paper we have presented a brief introduction to the software licensing using
open source licenses. Two major types of open source licenses were identified: BSD-
style licenses and GPL-style licenses. The main difference between these licenses is
that while BSD allows commercial derivations, GPL only allows derivations that are
also released under GPL license. Mixing of different license types is problematic;
especially when open source code is to be integrated with proprietary code, but also
when different open source licenses are mixed together. For these reasons it's very
important to be able to identify the licenses that a given software package contains.
We examined two commercial products for managing license information: Black
Duck and Palamida. As one of the most popular license compliance management
software, Black Duck protexIP presents a comprehensive solution based on Code
Print technology. The program compares the source code against millions of
commercial and open source code from its KnowledgeBase components. This feature
offers a direct and straightforward solution from matching the program code.
However, as the matching logic is not available, it is hard to assess the reliability of

 66

the produced result. Palamida contains a rich set of features; especially its license
database and the range of alternative scanning methods are impressive. Unfortunately
its system requirements are steep and since no demo version or impartial evaluation is
available we were not able to confirm its functionality.
We presented our own solution to the license management problem: Open Source
Licenses Checker (OSLC). The main feature of OSLC is its ability to identify licenses
by comparing source code comments with the license database by using an algorithm
derived from Paul Heckel's paper [10]. Other major features are the graphical and
command-line user interfaces, ability to open zip, jar, tar and file system source
packages and support for Java, C++ and PHP source code languages.
Compared to the commercial products, OSLC has more limited set of functionality
but it's usually successful in correctly identifying the licenses unless they are heavily
modified from the template license. Possible future improvements to the OSLC
program include advances in the matching algorithm and usability improvements.

4.2 Discussion
It seems clear that the importance of license management continues to grow as open
source software becomes more widely accepted in commercial environment.
Currently there seems to be only two commercial products and one open source
solution that deal specifically with this issue; we expect the situation to change in the
future as more companies and open source communities become aware of the issue.
Unfortunately it's difficult to obtain reliable information on how well these solutions
actually perform in correctly identifying licenses; it would be very interesting to see
qualitative scientific research where random source packages (perhaps taken from the
SourceForge) would be scanned with these solutions. It would also be interesting to
see a rigorous analysis on the algorithms used in these solutions; unfortunately it's
unclear if the companies would be willing to expose details of their algorithms, but at
least the code of OSLC is available for researchers according to the open source
philosophy.
We would be pleased if the OSLC program would continue its life as a vibrant open
source project.

 67

References

1. Introduction to IPR: http://www.piebusiness.info/Intellectual-Property-

Rights/Introduction.htm

2 Juha Laine, 2006, Legal issues in software engineering,
http://tiger.soberit.hut.fi/wiki/lib/exe/fetch.php?media=t763601:legalissues.ppt.pdf

3 Andrew M. ST. Laurent, 2004, Understanding Open Source Software Licensing (1st
edition). O’Reilly Media, Inc.

4 Ville Oksanen, Mikko Välimäki. 2005, License Compliance Software as a Tool for Open
Source Risk Management

5 Michael Tiemann, 2006, Approved open source licenses:
http://www.opensource.org/licenses/alphabetical

6 Harald Welte, 2006, District Court of Frankfurt Issues Verdict on GPL Violation of D-
Link, http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html

7 Rosen, L. 2004, Open Source Licensing: software Freedom and Intellectual Property
Law. Prentice Hall

8 OSSI project homepage: http://ossi.coss.fi/ossi/

9 Open Source License Checker 2.0 sourceforge project page:
http://sourceforge.net/projects/oslc/

10 Paul Heckel, 1978, A technique for isolating differences between files.
http://portal.acm.org/citation.cfm?doid=359460.359467

11 MIT License Definition: http://www.bellevuelinux.org/mitlicense.html

12 BSD License Definition: http://www.bellevuelinux.org/bsdlicense.html

13 Free Software Definition: http://www.bellevuelinux.org/free_software.html

14 GNU General Public License: http://www.opensource.org/licenses/gpl-license.php

15 Copyleft concepts: http://en.wikipedia.org/wiki/Free_software_license

16 LGPL license: http://www.opensource.org/licenses/lgpl-license.php

17 Wikipedia – LGPL license:
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License

18 Creative Commons definition http://creativecommons.org/

http://www.piebusiness.info/Intellectual-Property-Rights/Introduction.htm
http://www.piebusiness.info/Intellectual-Property-Rights/Introduction.htm
http://tiger.soberit.hut.fi/wiki/lib/exe/fetch.php?media=t763601:legalissues.ppt.pdf
http://www.opensource.org/licenses/alphabetical
http://gpl-violations.org/news/20060922-dlink-judgement_frankfurt.html
http://ossi.coss.fi/ossi/
http://sourceforge.net/projects/oslc/
http://portal.acm.org/citation.cfm?doid=359460.359467
http://www.bellevuelinux.org/mitlicense.html
http://www.bellevuelinux.org/bsdlicense.html
http://www.bellevuelinux.org/free_software.html
http://www.opensource.org/licenses/gpl-license.php
http://en.wikipedia.org/wiki/Free_software_license
http://www.opensource.org/licenses/lgpl-license.php
http://en.wikipedia.org/wiki/GNU_Lesser_General_Public_License
http://creativecommons.org/

APPENDIX 3: Value network analysis of Debian and
Eclipse

Analysing structures and operations of open source value
networks

Jussi Myllärniemi

jussi.myllarniemi@tut.fi

1. INTRODUCTION

Previously during OSSI –project there have been discussion about network studies on
open source (see for example Helander and Laine 2006). The conclusion is that the
number of actual network studies carried out from a business perspective on open
source is limited. There are some models that take into account the companies’
perspectives as the member of network or study the relationships between companies
and open source communities. But there are no studies how these models work in
practice.

In this value network analysis the purpose is to discover the structure and operations
of value networks that are formed in the open source software field. This study
concentrates on analyzing two different case communities and five different
companies. The analyses of the networks of the case communities help to explain the
structures of the existing open source value networks.

Firstly, the concept of open source value network is theoretically introduced. Earlier
during the OSSI-project Helander and Laine (2006) introduced some relevant models
concerning value networks: ARA (Håkansson & Johanson 1992), which is actually a
basic network model, and the Value-Creating Networks (Kothandaraman and Wilson
1999). The main outcome of the theoretical part is the general model of creating and
capturing value in open source network that is based on the mentioned theories.
Before analyzing the case networks with the help of the following figure, the concept
of open source value network is also explained.

Secondly, the value networks of the case communities, Eclipse and Debian, are
analyzed. The research data for analyzing the case communities is gathered from
different sources; the primary data includes a series of qualitative interviews and a
quantitative survey. The quantitative survey is made by Mikkonen et al. (2006a).

Based on the theme interviews, the roles of the companies are analyzed and included
in the networks. The analysis of the companies is based on figure X on page XX and
the theory presented by Seppänen (2006). Finally, the comparative analysis of the
value networks of the case communities summarizes the whole study.

2. THEORETICAL APPROACH

There are many different kinds of actors and roles in open source networks. Together
these actors form a large network that consists of lots of different skills. Helander and
Laine (2006, p.54) add an interesting point to the discussion about open source
developers. They say that the discussion about open source competencies has to be
taken down to the level of individual actors, because the competencies of an
individual actor play such a remarkable role in open source. Typically, in industrial
networks value creation is observed from the viewpoint of the organizations.

Dahlander and Magnusson (2005, p.481) say that the striking feature of open source is
that the knowledge needed to generate a software is not controlled by companies. It
resides within communities that co-exist with companies. Companies could, though,
control the competencies in open source communities by hiring employees to work
inside them. Also companies can launch their own communities.

Different kinds of ownerships, questions about resources and relationships, and the
roles of customers are hard to figure out in open source networks, and especially when
discussing open source value networks. During the OSSI-project previously
mentioned theories about value networks offer points of views to observe the value
creation in networks, but in the case of open source those general models do not work.
Activities, resources and core capabilities are hard to separate from each other, for
example, because of the amount of different players the open source environment
consists of. In addition, in the open source environment it is hard to say whether the
customers benefit from the value or not. Also, because of the amount of players, the
value capturing is quite confusing.

The statements mentioned above and the theories presented previously in the OSSI-
project were the basis of figure 1 “creating and capturing value in open source
network”. The figure takes into account how value is created between different actors
in open source network. It also points out who benefits from the value made in the
network. The inspiration for the figure was taken from Helender & Laine’s (2006)
thoughts. The concept of open source value network is based on figure 1.

VALUE

Actors Relationships Customers

Core competenciesCapturing

C
re

at
in

g

Figure 1. Creating and capturing value in open source network

 69

 70

Actors in the figure mean developers, which are mostly developers in open source
communities. Relationships mean the web of companies, which participate in creating
value. These relationships are the intermediators between communities and customers.
Actually, the same analogy could be seen in the open source value chain made by
Räsänen (2004) (see for example Helander and Laine 2006, p.52).

Relationships are needed to connect the needs of the customers and, on the other
hand, the needs of the developers. As stated before, they are both end users, and
therefore they may both have different expectations of the network and the value it
creates. Helander and Laine (2006, p.54) define value as a trade-off between the
benefits and the sacrifices the players make in the network. They (ibid.) say that value
needs to be created as well as captured by the whole network, not just by the
customers.

In the figure the value is created by actors and the companies they have relationships
with. Core competencies in the figure represent the resources (skills, knowledge etc.)
those players integrate to produce the best value as possible. Together the developers,
companies and customers form the open source value network, in which everyone’s
core competencies are used for value creation. The purpose of the open source value
network is to create the value which meet the requirements they asset together.

In the next chapter two different kinds of communities and five different companies
are used as examples of analysing open source value networks. The goal of that
analysis is to clarify how companies can operate in open source value networks. In
chapter 3.4. the analyses of the value networks of the case communities are based on
the model presented in the previous figure.

3. EMPIRICAL ANALYSIS OF THE OPEN SOURCE VALUE NETWORKS

3.1. Eclipse network analysis

Eclipse’s organization structure is quite hierarchical (see e.g. Eclipse.org), at least
from the view point of an outsider. Eclipse is a group of projects and top level
projects. Top level projects are managed by the Project Management Committee,
which include for example different kinds of councils. Inside one project there are
project leads, development teams, subsystems and project plans. Eclipse Foundation is
in the top of this whole organisation. (based on The Eclipse Foundation 2007)

The foundation does not employ the open source developers, which are called as
committers, but instead the foundation employs a full-time professional staff to
provide services to the community. Committers work on the projects of Eclipse; they
are trusted individuals who have write access to the source repository. They are
typically employed by organisations or are independent volunteer developers. (based
on The Eclipse Foundation 2007 and Luoma 2007, p.37)

The committers are mostly from different organisations (a.k.a. companies). The
survey (Mikkonen et al. 2006a) conducted in 2006 shows that 60,0 per cent of the
developers (or committers in this case) get most of their salary from Eclipse and
Eclipse is their main job. 58,7 per cent of the respondents identify themselves

 71

professionally as software engineers, and all of the respondents are highly educated
which means they have university education. Most of the respondents get their income
from software development (70,5 per cent).

In Eclipse the developers consider themselves closer to the center: 90,9 per cent of the
respondents see themselves as a project leader, core member or active developer. This
means that the developers do not just develop the code; they also take part in the
decision making. It could be said that they have a larger radius of influence. But
because there are so many projects running in Eclipse, the proliferation of leader roles
is expected, like Mikkonen et al. (2006c, p.26) point out.

As stated before, the developers consider their roles in Eclipse as those who are close
to the core. Still, when participating in proprietary software development the answers
varied a lot (Mikkonen et al. 2006a). Over 60 per cent have had the previously
mentioned roles, but every role had support, for example, bug fixer got almost 14 per
cent of the answers. But concerning these questions it is remarkable that developers
could choose more than one option. The results of these two questions cannot be
directly compared to each other, although there are a remarkable number of answers
that are close to the core.

This could be explained by analysing Eclipse developers’ attitude towards the
companies participating in the open source communities (Mikkonen et al. 2006a).
Almost every respondent think that it is good that companies give support to open
source projects. The same number of respondents (~95 per cent) thinks that
companies’ support is harmful, and almost 90 per cent disagree with the claim that
companies should not hire employees from open source communities.

Money divides opinions, when the respondents were asked for the reason why they
participate in open source projects. Less than 50 per cent say that they participate in
open source projects because of money, and almost 30 per cent of answers are neutral.
Some of the most interesting conclusions of the survey are the facts that Eclipse
developers participate in open source projects because they want to make programs
better, they want to learn new skills and they want to share their knowledge and skills.

The survey proves that the developers have face-to-face contact with other Eclipse
developers almost every day. There are no studies on how often other communication
methods (such as mailing lists, phone, and conversation forums) are used, but in this
era those methods could be assumed to be used more often than “traditional” face-to-
face conversations. The number of contacts depends on the subgroup (or –task) the
developer is working on. The sizes of these groups vary from a couple of persons to
hundreds.

Kidane and Gloor (2005) have studied the Eclipse community by analysing open
source teams’ creativity and productiveness. They studied the 33 Eclipse communities
that the whole Eclipse includes, by analyzing mailing lists. Kidane and Gloor (2005)
define creativity in this sense of “the amount of feature enhancement carried out by
eclipse component development groups”. The main conclusion was that the groups
that are centralized are found to be less creative when compared to the decentralized
ones. The groups that have higher communication density seem to be better
performers than those with low density.

Figure 2 takes into account the communication in Eclipse from a larger point of view
than for example Kidane and Gloor do. The main purpose of the figure is to clarify
how companies are connected and could be connected to Eclipse. This figure pays
also attention to companies that are not so strongly linked to Eclipse, in other words
are not members of Eclipse. The directions of interaction could also be seen in the
figure, although it is not the main point. Of course, the cooperation (or
communication) works in two ways, but only the main directions are described in the
figure.

Eclipse Foundation Eclipse Projects

Members
Committers

Company’s community

e.g. JBOSS,
Nokia, IBM

Partners
Big Medium Small

Equal

Overcome the size difference!

Figure 2. The Partner network of Eclipse

The researcher’s analysis, based mostly on www.eclipse.org and Cunningham’s
(2006) interview, reveals that there are two main ways for companies to benefit from
cooperation with Eclipse. The ways mentioned above are to become a member of
Eclipse Foundation or to support Eclipse projects (e.g. employing committers to
community). And of course, these two ways are not necessarily separate from each
other.

Support or cooperation is not so much dependent on the size of your community.
Eclipse creates a project environment where a small company could be equal with
IBM itself (Cunnigham 2006). Cunningham continues that Eclipse evens out the size
difference between the partners, and that is where all foundations that care about
commercial software should aim at. This is a relevant claim if compared to what has
been stated previously about the communities. In the open source value network value
is not only created to potential customers, but also the developers of the communities
are the end users. Overcoming the size difference is something that fits to the ideology
of a traditional open source developer.

 72

 73

Another way to cooperate with Eclipse is through the company’s own community. For
successful companies such IBM, Nokia and JBOSS, which Cunningham particular
mentioned, it is common that they have their own communities. For example Nokia
works closely within communities to develop software; their engineers take part in the
community work. So far it is important to note, that through the communities of
companies the companies could offer more completed products to committers for
further development. The committers could also be used as testers etc.

3.2. Debian network analysis

Debian has surprisingly clear organizational structure although it is a community
based on voluntarity. While Debian is the oldest community under investigation, it is
also the largest community, if measured in developers. It had almost 1000 voting
members in 2005, but there could be more: Debian mailing list had over 2000
members when the survey took place, so it could be said that there are 2000
maintainers. (based on SPI 2007)

The survey shows that approximately 50 per cent of the respondents consider Debian
as a hobby, but still almost the same number of developers (51,2 per cent) have a full-
time job. 25,6 per cent are full-time students. But professionally they identify
themselves more versatile than for example Eclipse’s developers: almost 24 per cent
are software engineers, 12,9 per cent are consultants and the rest are divided into
students, programmers etc. The developers are not as highly educated as in Eclipse.
Approximately 70 per cent have a university education, but in addition, about 20% of
the respondents are highly graduates.

The roles of Debian developers, according the survey, are not so close in the center as
the roles in Eclipse. Most developers (nearly 80 per cent) think they are active or
peripheral developers. The active developers regularly contribute new features and fix
bugs, while peripherals contribute only occasionally. This fact strengthens the view
that participating in Debian is more of a hobby than a profession for the developers.
But because the sample in the survey was quite small, one cannot make completely
reliable conclusions. In the case of Debian the returning rate was 4,2 per cent, while
the Debian’s list had 2024 subscribers and 83 respondents. This could be explained by
the number of active developers which could be smaller than the number of
subscribers, as Mikkonen et al. (2006b) explain.

Like in the case of Eclipse, also the roles of Debian developers differ in the
community and in proprietary software development. Almost 35 per cent have been
project leaders and core members in a proprietary software development, while only
less than 5 per cent have these roles in the community. This could be explained by the
fact that companies appreciate the Debian developers more than they imagine. The
developer’s knowledge has been found useful in the managerial duties of proprietary
software development. Also one fact is that Debian is just a hobby for developers
while they get their salary from somewhere else.

The attitude of the Debian developers toward companies’ participation in the projects
of the communities is comparable to the attitude of the Eclipse developers. It is good
that private companies give support to open source projects (94,1 per cent). Over 90

 74

per cent of the respondents disagree with the claim that the support is harmful, and
they are not against the fact that companies hire employees from open source
communities (almost 90 per cent). But it should be recognized that in the case of
Debian the support from companies is more like donations if compared to Eclipse.
Still, Debian has partner programs, which include the roles of development or service
partner.
Though Debian has this partner program, and it has many huge companies as partners
(e.g. HP, Sun, Simtec Electronics), Wirzenius (2007) names the upstream developers
and the users as the main cooperative partners of Debian. The upstream developers
are the main developers, who are expected to fix bugs and maintain as well as develop
their software. Still according to Wirzenius (2007), Debian expects to receive reports
from the users concerning problems.

According to SPI (2007), Debian works close to its partners for ensuring that it
understands the needs and concerns of the partners, and vice versa. Debian expects,
for example, promoting and advertising from the partnership. And as a compensation
for partnership, Debian recognizes partners officially and maintains a good working
relationship with them. Partners could also be as donators.

The survey proves that Debian developers have no face-to-face contacts with each
other. Only 27 per cent of the respondents had face-to-face contacts more often than
once a month. This fact is supported by the official websites of Debian; the
communication is mainly done through e-mail and irc (SPI 2007). The number of
contacts depends on the subgroup (or –task) the developer is working on. The sizes of
these groups vary from a couple of persons to hundreds, like in Eclipse. 50 per cent of
the respondents have contacts because they work on the same subtask, and almost 24
per cent have contacts because they are friends.

The next figure describes the directions of interaction, which the arrows symbolize.
Figure 3 presents the Debian community and the main players around it. The
responsible roles mentioned above (e.g. the Debian Project Leader, The Technical
Committee) are included in the developer community and in the upstream developer
teams. The upstream developer teams are the “cell” which is a more important
cooperation partner to Debian than others.

Debian

Developers

Packages

Users

Company’s developers

Partners

Developer community

Donators
SPI

Upstream
development teams

Figure 3. Direction of interaction between major players in Debian.

The same analogy that presented in the figure could be seen in Kothandaraman and
Wilson’s (2001) figure “Model of value-creating networks (see Helander and Laine
2006, page 50). Analogy means the interaction between the core “players”. Although
the figure is for understanding the value creating process and its links to the core
capabilities of the firms in the network, it could also be used in the case of Debian.

The main software development is done by upstream developer teams. These teams
could be seen as the main competencies of Debian. The value it produces is created by
these teams. The value strengthens the relationships between Debian and the
developers. It also strengthens the relationships between Debian and other players.
For example, users who, for example, report from bugs, define the relationship to
Debian according to the kind of value or benefits they get from it.

The users are separated from the developers in this figure. These users mean users
outside the community. The reason they are separated is because Wirzenius (2007)
particularly mentioned those as important partners.

The arrows in the figure reflect the way companies can affect the cooperation with
Debian. One way is through a developer community by employing some developers
of companies to work with Debian. Upstream developer teams are in an important
position in the decision-making, and their work for packages is remarkable, therefor it
is important for the companies to get their employees in those kind of positions.
Contacts with the upstream developer teams may be considered to be the most
important contacts from the point of view of the partners (and the companies).

The support the partners give is compensated by the value they get. It is also very
common that companies’ own developers are a part of the Debian community.
Consequently, the support the companies give is also compensated through
community to Debian, as presented in figure XX. The support the companies give can
be donations. SPI is the way the donators support Debian. SPI (Software in the Public

 75

 76

Interest) is a non-profit organization formed to help other organizations create and
distribute free/open-source software and open source hardware. Debian uses it for
handling money donations. In this case the cooperation could be considered to occur
in only one direction rather than interactively as in partnering.

3.3. The analysis of the case companies

As stated before, the company analysis is based on the interviews made during the
spring 2007. In addition to the interviews, the material was gathered form the internet
and from other secondary sources. The companies under analysis were F-Secure,
IBM, Nokia Networks, Novell and Plenware. The following figure illustrates the
OSSI framework where the case companies are added. The position of the companies
is based on the analysis of the interviews.

F-Secure utilizes open source software applications, and, at some level, open source
software could be seen as a tool in research and development. F-Secure is interested in
communities, but not enough to be considered as actively participating in the
management of the communities etc. Actually, the company is interested in improving
knowledge of solutions that are not created only for open source customers but also
for the developers of open source communities. It could be said that the company is
not very interested in utilising traditional open source but it is interested in how they
can integrate their services to “community –thinking” and to open source environment
as a whole.

If compared to figure 4 F-Secure does not contribute open source in a way it is
analyzed from the point of view of sociology. In technology and business aspects it is
positioned to the middle of OSS application utilizers and the type which uses OSS
tools in research and development.

Like F-Secure Plenware utilizes open source software both for technology and
business benefits. The company uses open source tools in software development,
utilizes open source application platforms and databases, and integrates OSS
components for customer solutions.

In the same level with Plenware is IBM business unit. Actually, because of the size of
IBM, there are different approaches for IBM corporation and for the interviewee’s
Finnish business unit concerning open source. The corporation sees open source as an
opportunity for growth; utilizing open source expands the markets for information
technology services. A business unit’s open source strategy could be considered from
an economical and innovative viewpoint. It is a tool for cost efficiency, it offers
competitive and price advantage. The business unit of IBM does not invest in open
source, it utilizes open source applications. The unit benefits from the work the
communities do. But the corporation invests, for example, money to communities and
in exchange they get some software development (information, technology etc) from
communities.

As the whole IBM, also Nokia works in every level of the sociology and technology
aspects. Nokia does not launch communities but they work on all the other levels in
the business aspect. This means that Nokia does not launch any open communities for
outsiders. The company utilize open source software as much as possible because the

main purpose is to produce value to customers, and Nokia understands the
possibilities the open source can offer. Flexibility, speed and cost savings are the
reasons for using open source.

Another company that contributes open source in every level is Novell. The company
has used open source components for years in some of Novell’s own products;
components from MySQL, JBoss etc. Actually, Novell develops open source software
as a part of their business, which is quite unique in the business world. The company
has tried in every possible way to be a part in communities and to support the idea that
open source is a central way of distributing and developing programs. In general, this
can also be considered from Novell’s investments concerning open source: they have
released their products, maintained the conversation of open source in many ways etc.

TECHNOLOGY

SOCIOLOGY

BUSINESS

OTHER
PUBLIC/
PRIVATE

INFLUENCE

OSS
APPLICATION

UTILIZERS

OSS
AS TOOLS

IN R&D

OSS
COMPONENT
INTEGRATION

ACTIVE
PARTICIPATION
& MANAGEMENT

OF OSS
COMMUNITIES

LAUNCHING
NEW

COMMUNITIES

OSS CONTRIBUTION INCREASES

COMPLEXITY OF THE OSS MANAGEMENT INCREASES

F-Secure

F-Secure

IBM business unit
Plenware

IBM business unit

IBM business unit
Plenware Nokia

IBM
Nokia
Novell

IBM
Novell

IBM
Nokia
Novell

Figure 4. Position of companies in the OSSI framework

In addition, table 1 introduces another summary of the company analyses.

F-Secure is more of a follower when it comes to open source. This means, for
example, participating in research projects. Comparing F-Secure with the role aspect
in the figure 4 their type of involvement is on the level of observer or user. It is hard
to place F-Secure to a certain role because of the information presented in this
chapter. The observer follows open source development, but user uses the applications
that it finds more valuable to its business. In the case of F-Secure, open source is not
the main thing because they are interested in communities.

Opposite to F-Secure, Plenware has formed a strategy concerning open source; it is
seen as a clearly strategic issue. They have for previously used open source
components and platforms in several projects, but during the last few years they have
invested more in open source. Therefore, Plenware is classified as a user or an
adapter, or an integrator. From the integration point of view, Plenware’s own VoIP
system using OSS Asterisk PBX is a good public example. Internal studies at
Plenware have found amond personnel a positive attitude towards open source and a
high level of voluntary participation in OSS projects. Still, it is important to notice

 77

that Plenware’s main business is providing software development services for top
companies and that is why the company is difficult to position as a single user type.

On the other hand, the positioning of the corporation of IBM and the interviewee’s
business unit is quite easy. The Finnish business unit works as an application utilizer
or component integrator, which could be concluded from above. The user type for the
business unit is also the integrator, while the corporation is the promoter. It is typical
for promoters to invest in communities, in the case of IBM investing means money
and patents. But in this case the business unit benefits, while the corporation invests.
At least this is the viewpoint of IBM and for example in the case of Nokia, the roles
are the other way round.

Like in the case of IBM also Nokia is hard to handle as the whole corporation, and
that is why Nokia is analyzed from the viewpoints of the whole corporation (as
Nokia) and Nokia Multimedia. Nokia is the user or adapter if considered from the
points of view of the user types (cf. table 1). Nokia uses browsers which are based on
open source software. The unit of the interviewee, that is a part of Nokia Multimedia,
could be seen as the integrator, because it uses the Linux operating system, or the
engine, because Gnome is an important partner, or the promoter, because it has
developed the maemo.org.

Like said before, there are no open source software user types that Novell does not
fill. For example, Novell uses lots of different wikis and other social communication
tools. For example, Novell uses wikis in documentation. In addition, Novell has its
own internal developing community. Besides maintaining its own community, Novell
works closely with communities, which is typical for a promoter. According to the
interviewee, besides Red Hat and IBM, Novell has most open source developers in
different kinds of community projects in the world.

Table 1. Involvement types of the case companies

Maintains and
contributes selected
communities

Own brand and
ecosystem

Large
investments,
imago

Brand benefits with
engine role

Promoter

Has committed oneself
to certain community

Gets own ecosystemInvestmentsLeads developmentEngine

Typically has stronger
connection

Taps others brainPossible imago
lost

Integrates with its
own development

Integrator

Has a weak linkAbility to guide
development toward
own interests

Cannot guide
development

Efficient usageAdapter

May follow discussionsBenefits others
investments

Cannot guide
development

Picks raisins from
bun

User

May follow discussionsNo investments,
timing advantage

Does not get
benefits

Keeps distance,
follows development

Observer

CommunityBenefitsSacrificesPrimary targetType of
involv-ement

Maintains and
contributes selected
communities

Own brand and
ecosystem

Large
investments,
imago

Brand benefits with
engine role

Promoter

Has committed oneself
to certain community

Gets own ecosystemInvestmentsLeads developmentEngine

Typically has stronger
connection

Taps others brainPossible imago
lost

Integrates with its
own development

Integrator

Has a weak linkAbility to guide
development toward
own interests

Cannot guide
development

Efficient usageAdapter

May follow discussionsBenefits others
investments

Cannot guide
development

Picks raisins from
bun

User

May follow discussionsNo investments,
timing advantage

Does not get
benefits

Keeps distance,
follows development

Observer

CommunityBenefitsSacrificesPrimary targetType of
involv-ement

F-Secure

Nokia
Plenware

Nokia Multimedia Novell

IBM business unit

IBM

Dahlander and Magnusson (2005, p.482) state that there are numerous factors which
explain the differences in the performance of companies dealing with open source.

 78

One is that certain firms just have superior capabilities, they have superior products,
or they are better in their exploitation activities than others. But one reason might also
be that some companies have better relationships to open source communities.

In the next chapter the roles mentioned above are connected to the value networks of
the case communities. These roles are mostly discussed on a general level without
going into any details of a certain company’s characteristics. The chapter also takes a
stand on the relationships formed between communities and companies.

4. THE VALUE NETWORKS OF THE CASE COMMUNITIES

Previously in chapters 3.2 and 3.3 were presented the communities of Eclipse and
Debian. Some of the most important facts concerning the structures of both
communities were presented. On the other hand, the chapters do not take into account
very deeply how value is created in the networks. In the following figures 5 and 6, the
value networks of these two open source communities are presented. These figures
take into account how value is created, what the main competencies of these
communities are, and who benefits from the created value. After the discussion on
value creation, the relationships between the communities and companies are taken
under deeper investigation in chapter 3.6. The chapter also discusses the different
ways to operate in the open source value networks.

4.1. Differences of the case networks

Figure 5 presents the value network of Eclipse. Eclipse is more business oriented than
Debian, which can be seen in the figure, too. The main players are the committers of
Eclipse, the partner companies and their communities, and the customers.

VALUE

Community Relationships Customers

Core
competencies

Company’s
community

Figure 5. Value network of Eclipse

 79

 80

The value network of Eclipse has same characteristics as the model of creating and
capturing value in open source network which was made from the perspective of the
companies. The models are similar because Eclipse acts very professionally as a
community, which has been proved already in this study. Only the community and the
company’s community are different. It is also important to note that there are no
previous mentions about the customers in the network of Eclipse but they were added
to this figure because of the value network of Eclipse is so business oriented and in
business networks the companies always take those into account.

The community includes the developers of Eclipse. Those developers are typically
employees from some organizations or independent developers. They work closely
with the companies. The relationships represent the web of partners, members and
other companies. Although the member organizations of Eclipse invest a lot in
Eclipse, they are not mentioned separately in this figure. This is because Eclipse evens
out the size difference between the companies, and so all companies have the same
possibilities to affect Eclipse.

The purpose of the company’s community is to emphasize a way how companies can
interact with Eclipse. Although there are no studies on how these communities work
with Eclipse, it is clear that successful companies have their own communities.
According to the survey made in 2006, over 80 per cent of the developers of Eclipse
that participated in the survey thought that companies should employ their own
developers to open source projects. Therefore, it could be concluded that if the
company has its own community, the relationship to Eclipse could be more efficient.

Together the community of Eclipse and the companies form the core competencies
which create the value of the network. The conclusion that people are the main
competence in communities and, in this case in Eclipse, could be drawn based on
several sources (e.g. the Survey, and Goldman & Gabriel 2005). Thus, the willingness
of the developers of Eclipse and also the developers of Debian, to develop themselves,
to help each other and to share their knowledge is crucial.

Although the people in both Eclipse and Debian are willing to share their knowledge
and to help each other, it is strange that the communication in their case is totally
different. There are no face-to-face contacts between Debian developers. Of course,
one explanation is that Debian is more like hobby to developers, and the
communication is handled besides other tasks.

According to the survey over 85 per cent of the respondents of Debian developers
thought that companies should employ their developers to open source projects. Also
according to the websites of Debian, the community aims to work in a close
relationship with its partners. The partners are highly appreciated. Actually, figure 6,
where the value network of Debian is described, takes into account these facts. The
main players in this figure are the developer community of Eclipse, the relationships,
the users, the customers and the upstream developer teams.

VALUE

Community Relationships Customers

Upstream
development teams

Users

Figure 6. Value network of Debian

Like in the case of Eclipse also in this figure the relationships are formed between the
partner companies and other companies which are interested in it. The relationships
also include donators, which Debian appreciates. For example, the survey proofs that
the developers of Debian thought that donations are a useful way for companies to
collaborate with Debian.

The arrows from relationships to upstream developer teams, and also from value to
customers are dashed because of the uncertainty of the roles of the companies and the
customers in the value creation of the value network. In chapter 3.2 it is stated that the
upstream developer team forms the core competency of Debian and the teams are the
main actors who create the value. The companies interested in Debian should be
emphasized directly, not just through the community. There is no certainty if
companies already do this, but the results of the survey and the interview of Wirzenius
do not support this statement very strongly.

Like in the value network of Eclipse, Debian does not create value to the customers, at
least not so visibly. Because Debian is based on voluntariness, the developers create
value mainly to themselves and to the end users. In figure 6 the users are separated
from the customers and community developers because of their importance to Debian.
Debian does not work as professionally as Eclipse, and that is why its end users are
not the same ones with customers.

Based on the fact that the Eclipse developers have larger influence on the community
and they take part in the decision-making, and reciprocally the Debian developers
base their interest towards their community on voluntariness, one could draw a
conclusion that approaching the developers of Eclipse is more certain or safer from
the business perspective.

As mentioned before, one reason for Eclipse being more business oriented than
Debian, is their different ideologies. Approximately 60 per cent of Debian developers
said that they develop software because it should be free. On the other hand, over 60
per cent of Eclipse developers disagree with the claim. It seems that the developers of

 81

 82

Debian follow the same ideology the free software was based on, though like argued
above there are facts that support doing software business more professionally in
Debian.

Dahlander and Magnussen (2005, p.489) noticed that norms and values cause
challenges between communities and companies. Actually, they (2005, pp.489-490)
noticed that there are some managerial issues that are critical to attend to in relation to
the community from the perspective of the company. Their challenges are easily
linked to this thesis, because in the case of each challenge there are similarities to the
analysis of this study. They (ibid.) base their study on observing the case studies of
Nordic open source companies. More about these challenges and in general, the ways
to operate in open source value networks are in the following chapter.

4.2. Challenges of operating in open source value networks

One challenge is about the value and norms which were mentioned already. Firms that
have key individuals within projects have the possibility to handle the boundaries
between communities and companies. Also Dahlander and Magnusson (2005, p. 489)
mention that companies that have established communities have greater influence to
communities. O’Mahoney and Ferraro (2004) (in source: Dahlander & Magnusson
2005, p.489) emphasize the importance of face-to-face interactions in managing the
boundaries of open source.

Some of the case companies, which are called promoters, have their own communities
or they maintain and contribute to some communities. But the company does not have
to be the promoter or engine type of the company to overcome this challenge. The
integrator or even the adapter could guide the development of communities, if not by
itself, at least in cooperation with its partners.

Another challenge is handling the different licenses. Although the license issues have
not been studied very deeply in this thesis, they are important because the licenses
affect the ownerships of open source projects and also have symbolic value (modified
from Dahlander & Magnusson 2005, p.489). According to the survey made by
Mikkonen et al. (2006), Eclipse developers prefer CPL (almost 60 per cent) while
Debian developers almost unanimously prefer GPL or LGPL (over 80 per cent).
Companies which are used to develop commercial software might find it hard to use
the open source licenses, especially GPL.

Licenses are one solution for the control and ownership issues. Dahlander and
Magnusson (2005, p.490) point out the business model MySQL chose to resolve this
problem. MySQL used dual licensing to make a difference between paying users and
non paying users. It could be said that licenses, and from a broader perspective,
business models, direct the relationships with companies and communities. For
example, IBM uses a patronage model with Eclipse.

On the other hand, Debian developers prefer GPL, and also the fact that Debian is
more like a free community, supports the use of certain models and licenses with it.
But still, it is hard or almost impossible to say that a certain type of company (cf. the
roles on table 1) must use a certain business model when dealing with the case
companies. Plenware is a good example. The company is identified as a user or an

 83

adapter, but with some partners it develops communities to certain directions and the
role of integrator could be used. The roles, in general, are dependent of the business
model and, therefore of, the license the company uses.

Nowadays although there are communities like Debian, the contributions the
companies make to open source assist to form communities like Eclipse. Open source
is moving towards a more professional way of doing business, and more and more
actors appear to the open source networks. This means that the existing companies in
the open source networks must improve their relationships to the communities they
deal with.

So far value is created, for example in Debian, to developers and users, while in
Eclipse it is done more strongly to customers. One challenge that also Dahlander and
Magnusson (2005, p.489) have figured out, is the different interests when it comes to
the nature of the work between companies and communities. Companies want to
create value to customers while communities prefer to create it to themselves.
Actually, this is something that has already been discussed in this chapter when the
reasons behind the structure of the value network of Debian (cf. the dashed lines in
the figure 3) were considered.

The case companies do not have any specific conflicts with the communities. Even
though some misunderstandings exist on the ideological level, there are no conflicts
that could be connected to a certain role that were presented in table 1. Two of the
challenges Dahlander and Magnusson (2005) present are related to the previous
statement. One is about control and ownership that occur especially with the firms
that are active in creating new projects, and another is about avoiding direct conflicts
with the communities (modified Dahlander & Magnusson 2005, p.490). When
considering the conflicts within communities it should always be noticed that
communities consist of thousands of people who all make up their minds
independently. The most popular communities cannot have only supporters, as the
CEO of MySQL Mårten Mickos (2007) states it.

The interviews show that there are problems inside the companies neither. There was
no user type that has problems with the activity of the developers towards open
source. Actually, some of the case firms were surprised by the voluntariness of their
employees. This is actually a contradiction to Dahlander and Magnusson’s (2005,
p.489) study, which claims that one challenge is to attract developers to contribute and
users to use the software or the product.

This might be a challenge when employing outsiders from communities for the
development, but when employing own developers to work with a certain community
there should not be problems. Though, the open source environment offers so many
and so different kinds of programs and techniques to developers and users which
compete with the company’s own methods that this challenge is not so hard to
imagine.

In value creation, resources are essential. In the previous chapter the employees were
presented as one resource that companies could use to affect the communities.
Resource consumption related to community development is a challenge mentioned
by Dahlander and Magnusson (2005, p.489). This is something that the promoters of

 84

this study have noticed as well the investments to open source and to communities
must be significant. Besides time and money, those types of companies have released
patents and given up copyrights etc. In return for the investments the promoters
capture the benefits from value creating. But large investments are not the only way to
cooperate with communities. For example, donations to Debian are an easy way to
affect the development done in Debian and by donations the jump to partnering is not
so long. Debian has admitted that partners are highly valued.

5. SUMMARY

In open source value networks, value creation is usually centered to some
communities. In the case networks value creation is different because the values and
norms of the participants differ from one another. Because of that, Eclipse community
seems to be most approproate for companies who are willing to develop the code in
the sense of making money. Debian, on the other hand, which is a much larger
community than Eclipse, is closer to the basic ideology of the whole open source
concept and, therefore, regulates the development of the open source movement in
general.

In the case of Eclipse, the customers play a more important role than in Debian. This
is supported by the statement that in the network of Eclipse the value is created to the
customers, while in the network of Debian the value is created to the developers and
the users. This is partly because of the different values and norms the developers have
in the case communities.

In both case communities, the developers are one important part of the core
competence that contributes to the value. Diverse backgrounds and skills are the
richness of the communities. This is what all the participants should understand. No
company can lead the communities by itself in open source value networks because
there are too many playes involved. Together the developers, companies and also
customers form the open source value network, and they set the requirements for the
value which they create together.

The developers and the companies form the core competence in the value network of
Eclipse. This emphasizes the importance of the relationships between communities
and companies, in general. The study shows that the promoters get the best benefit out
of open source because they have made the largest investments. They have, for
example, launched their own communities. By emphasizing the relationships between
the own communities of the companies and the communities (like Eclipse and
Debian) the best benefit can be achieved. In the case of Debian, the upstream
developer teams are the core competence that every type of companies should be
connected to. By interacting with the communities, the companies could more
efficiently follow the discussion concerning open source, and at the same time share
the knowledge of the firm. Actually, the survey proves that the developers of both
case communities are willing to share and adapt the knowledge. This is something the
firms that are interested in open source should consider, for example, when the
companies want to increase the awareness of the company among the communities.

 85

REFERENCES

Dahlander, L. & Magnusson, M.G. 2005. Relationships between open source software
companies and communities: Observations from Nordic firms. Research Policy. Vol
34 (4). pp. 481-493.

Goldman, R. & Gabriel R. P. 2005. Innovations Happens Elsewhere - Open Source as
Business Strategy. The United States of America, Morgan Kaufmann. 402 p.

Helander, N. & Laine , J. 2006. The Value Network Approach to Open Source
Software Business. In: Helander, N. & Martin-Vahvanen, H. (eds.) 2006.
Multidisciplinary Views to Opens Source Software Business. Tampere, eBRC
Research Reports, 33. pp. 46-57.

Håkansson, H. & Johanson, J. 1992. A Model of Industrial Networks. In: Axelsson, B.
& Easton, G. (eds.) 1992. Industrial Networks. A New View of Reality. London,
Routledge. pp. 28-36.

Kothandaraman, P & Wilson, D. T. 2001. The Future of Competition: Value-Creating
Networks. Industrial Marketing Management 30/2001. pp. 379-389.

OSSI Research Group. 2007. OSSI Research Project – Managing Open Source
Software as an Integrated Part of Business.
[http://ossi.coss.fi/ossi/fileadmin/user_upload/Other/ossi_seminaari31052007_final.pd
f]. Read 2.7.2007

Räsänen, P. 2004. Opening Speech at Open Mind Conference 11.11.2004.

Seppänen, M. 2006. Thoughts on competitive strategy and OS. In: Helander, N. &
Mäntymäki, M. (eds.) 2006. Empirical Insights on Open Source Business. Tampere,
eBRC Research Reports, 34. pp. 4-10.

Empirical Material:

a) Qualitative interviews
• Company interviews:

o F-Secure / Janne Järvinen: 5.4.2007
o IBM / Juha Hulkkonen: 30.3.2007
o Nokia Multimedia / Ari Jaaksi: 10.4.2007
o Novell Finland / Kim Aaltonen: 5.4.2007
o Plenware / Pauli Kuosmanen: 11.4.2007

• Community interviews:

o Debian / Lars Wirzenius: between 23.-25.5.2007
o Eclipse / Ward Cunningham: 17.5.2006
o MySQL / Mårten Mickos: between 9.-19.4.2007

b) Quantitative data

 86

• Mikkonen, T., Vadén, T.& Vainio, N. 2006a. FOSS survey.

c) Secondary data
• Kidane, Y.H. & Gloor, P.A. Correlating Temporal Communication

Patterns of the Eclipse Open Source.
[http://www.casos.cs.cmu.edu/events/conferences/2005/2005_proc
eedings/Kidane.pdf]. Read 5.6.2007.

• Luoma, I. 2007. On Software Engineering in Open Source
Software: A survey of selected projects. Master of Science Thesis.
Tampere, Tampere University of Technology, Department of
Information Technology.

• Mikkonen, T., Vadén, T.& Vainio, N. 2006b. Survey on four OSS
communities: describtion, analysis and typology. In: Helander, N.
& Mäntymäki, M. (eds.) 2006. Empirical Insight on Open Source
Software Business. Tampere, eBRC Research Reports, 34. pp. 52-
66.

• Mikkonen, T., Vadén, T.& Vainio, N. 2006c. Open Source
Communities: A Mix of New, Old and Very Old Characteristics.
In: Helander, N. & Antikainen, M. (eds.) 2006. Essays on OSS
Practices and Sustainability. Tampere, eBRC Research Reports, 36.
pp. 15-31.

• SPI. 24.5.2007a. About Debian.
[http://www.debian.org/intro/about]. Read 5.6.2007

• The Eclipse Foundation. 2007. About the Eclipse Foundation.
[http://www.eclipse.org/org]. Read 15.3.2007

APPENDIX 4: OSSI research in a nutshell

OSSI Research Project Publications by themes

LaikaLaikaOSS
In general

OSS
In general

DebianDebian EclipseEclipse MySQL

Technology

Sociology

Business

GNOME

Law

1

12, 3, 9, 13, 16,
22, 25

6,7,8,13,14

4, 22

25 25

17, 18

19

Refereed book chapters

1. Järvensivu, Juha., Helander, Nina. & Mikkonen, Tommi. Dependencies, Networks
and Priorities in an Open Source Project. In Handbook of Research on Open Source
Software: Technological, Economic, and Social Perspectives. (Eds.) Kirk St. Amant
and Brian Still, Texas Tech University. Ch 10.

2. Seppänen Marko, Helander Nina & Mäkinen Saku. 2007. Business models in OSS
value creation In Handbook of Research on Open Source Software: Technological,
Economic, and Social Perspectives. (Eds.) Kirk St. Amant and Brian Still, Texas Tech
University. Chapter 45.

3. Puhakka Mikko, Jungman Hannu & Seppänen Marko. 2007. Investing in Open
Source Software Companies: Deal Making from a Venture Capitalist’s Perspective. In
Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives. (Eds.) Kirk St. Amant and Brian Still, Texas Tech University.
Chapter 41.

4. Vainio, Niklas. & Vadén, Tere. Free Software Philosophy and Open Source. In
Handbook of Research on Open Source Software: Technological, Economic, and
Social Perspectives. (Eds.) Kirk St. Amant and Brian Still, Texas Tech University. Ch
1.

Journal Articles

5. Mikkonen, Teemu., Vadén, Tere. & Vainio, Niklas. 2007. The Protestant ethic
strikes back: Open source developers and the ethic of capitalism. First Monday,
volume 12, number 2 (February 2007).

6. Oksanen, Ville. & Välimäki, Mikko. 2006. Free Software and Copyright
Enforcement - A Tool for Global Copyright Policy? Knowledge, Technology &
Policy Winter, Volume 18, Issue 4, pp. 101-112.

 87

 88

7. Välimäki, Mikko. 2005. Software Interoperability and Intellectual Property Policy
in Europe. European Review on Political Technologies. Dec. 2005.

8. Välimäki, Mikko. 2006. Copyleft Licensing and EC Competition Law, European
Competition Law Review 3/2006 (Volume 27, Issue 3), pp. 130-136.

Articles in Conference Proceedings'

9. Helander, N. & Rissanen, T. 2006. Value-creating Networks Approach to Open
Source Software Business Models. In Seppä, M. Hannula, M. Järvelin, A-M, Kujala,
J. Ruohonen, M. & Tiainen, T. (eds.). Frontiers of e-Business Research 2005.
Tampere University of Technology & University of Tampere.

10. Järvensivu J., Helander N. & Mikkonen T. The network characteristics of Open
Source software business: a multi-disciplinary case study. The ICEB & EBRF
Conference Tampere, November 28- December 2, 2006.

11. Järvensivu, J., Kosola, M., Kuusipalo, M., Reijula, P. and Mikkonen, T.
Developing an Open Source Integrated Development Environment for a Mobile
Device. International Conference on Software Engineering Advances, Tahiti, French
Polynesia, Oct. 29.-Nov.3., 2006.

12. Kujala J., Helander N. & Lehtimäki H. Analysing Multi-voiced Strategising and
Firm-stakeholder Interaction in Open Source Software Communities. The ICEB &
EBRF Conference Tampere, November 28- December 2, 2006.

13. Oksanen Ville, Helander Nina, Seppänen Marko, Puhakka Mikko & Laine Juha.
2007. Building SaaS Business on Top of Open Source – Economic and Legal
Considerations. Berkeley-Tekes Innovation in Services Conference. April 27-28,
2007. Berkeley, USA.

14. Oksanen, V., Välimäki, M. & Laine, J. 2005. An Empirical Look at the Problems
of Open Source Adoption in Finnish Municipalities. Seventh International Conference
on Electronic Commerce, China.

15. Puhakka, M. & Jungman, H. 2006. Evaluation and Valuation of Open Source
Software Companies: A Venture Capitalist’ Perspective. In Seppä, M. Hannula, M.
Järvelin, A-M, Kujala, J. Ruohonen, M. & Tiainen, T. (eds.). Frontiers of e-Business
Research 2005. Tampere University of Technology & University of Tampere.

16. Puhakka M., Oksanen V. & Seppänen M. 2006. A study of the deployment of
open source software – Finnish experiences from public and private sector. The ICEB
& EBRF Conference Tampere. November 30th – December 2nd, 2006. CD-ROM.

17. Vainio, N., Vadén, T. & Oksanen, V. Sustainability of open collaboration
communities: five aspects. FM10 Openness: Code, Science and Content. 2006.

18. Vainio, N., Oksanen, V. & Vadén, T. Company Participation in Open Source
Software Communities: Measuring Sustainability. The ICEB & EBRF
Conference Tampere, November 28-December 2, 2006.

http://www.sweetandmaxwell.co.uk/catalogue/journals/4364/index.html
http://www.sweetandmaxwell.co.uk/catalogue/journals/4364/index.html

 89

Other Publications

19. Aaltonen, T. & Jokinen J. Demography of Linux Kernel Developers. Tampere
University of Technology. Institute of Software Systems. Report 41.

20. Puhakka, M. The Future is Open – Are You and Your Company ready?
forthcoming in 2006 Ariadne Capital Journal.

21. Puhakka, M. & Tapper, H. Open Source and Proprietary Software – The Finnish
Experience. forthcoming in 2006. TIEKE.

22. Vainio Niklas, Oksanen Ville, Vaden Tere & Seppänen Marko. 2007. Elements of
Open Source Community Sustainability. Poster at the OSS2007, 11-14 June.
Limerick, Ireland.

23. Vainio, N. & Vadén, T. Valoa basaarista. Internetin vapaan ja avoimen koodin
kollektiivinen kehitystyö. forthcoming 2006 in Parviainen, Jaana (ed.): Kollektiivinen
asiantuntijuus. Tampere University Press.

Master theses

24. Ilkka Luoma. Forthcoming 2007. Master of Science Thesis. Tampere, Tampere
University of Technology.

25. Myllärniemi, Jussi. 2007. Structures and operations of open source value
networks. Master of Science Thesis. Tampere, Tampere University of Technology. 77
p.

26. Jarkko Laine. Forthcoming 2007. Master of Science Thesis. Tampere, Tampere
University of Technology.

OSSI Reports

Helander, Nina. & Antikainen, Maria. (eds.) 2007. Essays on OSS Practices and
Sustainability. e-Business Research Center Research Reports 36. Tampere University
of Technology & University of Technology.

Helander, Nina. & Mäntymäki, Maria. (eds.) 2006. Empirical Insights on Open
Source Software Business. e-Business Research Center Research Reports 34.
Tampere University of Technology & University of Technology.

Helander, Nina. & Martin-Vahvanen, Hanna. (eds.) 2006. Multidisciplinary Views to
Open Source Software Business. e-Business Research Center Research Reports 33.
Tampere University of Technology & University of Technology.

Others

Helander, Nina & Ulkuniemi, Pauliina. (2006): Marketing Challenges in the Software
Component Business. International Journal of Technology Marketing Vol. 1 No 4 pp.
375-392.

 90

Mäkinen Saku & Seppänen Marko. 2007. Assessing business model conceots with
taxonomical research criteria. Management Research News. Vol. 30 Iss. 10.

Seppänen Marko & Mäkinen Saku. 2007. Towards classification of resources for the
business model concept. International Journal of Management Concepts and
Philosophy. Vol. 2, Iss. 4.

Ahonen, M., Antikainen, M. and Mäkipää, M. 2006. What motivates customers to
innovate for free? - Utilizing Web 2.0 Communities in mass customization and
customer co-design. Conference proceedings of Mass Customization and
Personalization Forum 2006. University of Tampere.

Ahonen, M., Antikainen, M. and Mäkipää, M. Supporting collective creativity within
open innovation. EURAM 2007, Paris, May 16-19, 2007.

Mäkinen, S., Seppänen, M. & Nokelainen, T. 2005. Resources and Dynamic
Capabilities in Business Model Concepts: A Review of the State-of-the-Art. The
25th SMS Annual International Conference. Orlando, Florida. USA. October 23rd-
26th, 2005.

Mäkinen, S. & Seppänen, M. 2006. Strategic Management of Exploiting
Technological Opportunities: Integrating Strategy to Operations with Business Model
Concept. The 15^th International Conference for Management of Technology Annual
Conference 2006. Beijing, China. May 22^nd – 26^th, 2006.

Mäkipää, M., Ahonen, M. and Mäntymäki, M. 2006. Developmental steps from
closed innovation to open innovation – Increasing customer involvement through
mass customization and customer co-design. In Proceedings of the 29th Information
Systems Research Seminar in Scandinavia (IRIS 29). Helsingor, Denmark.

Seppänen Marko & Mäkinen Saku. 2007. Resource categorisation as a part of
business model concept: an empirical assessment of appropriateness from business
unit manager’s perspective. The 14th International Product Development Conference.
Porto, Portugal. June, 10-12, 2007.

Seppänen, M. 2006. A propositional inventory of human resources for the business
model concept. The proceedings of the 3rd International Conference ENTIME 2006.
Gdansk, Poland, September 22-23, 2006. 8p. CDROM.

Seppänen, M. & Mäkinen, S. 2006. Conceptual Schema of Resources for Business
Models. The 3rd IEEE International Conference on Management of Innovation and
Technology, Singapore, June 21-23, 2006.

Seppänen, M. & Mäkinen, S. 2005. Business model concepts: a review with case
illustration. The Proceedings of the International Engineering Management
Conference 2005. St. John’s, Newfoundland, Canada. pp. 376-380.

	1 PART I: INTRODUCTION
	1.1 Overview to OSS business and its development
	1.2 Basis for the research: different OSS user roles
	1.3 Structure of the report

	2 PART II: GUIDELINES FOR SUCCESSFUL COMMUNITY PARTICIPATION
	2.1 Facts about the case communities
	2.1.1 Debian
	2.1.2 GNOME
	2.1.3 ECLIPSE
	2.1.4 MySQL

	2.2 Tools for recognizing sustainability risks
	2.3 Conclusion: typology of OS communities

	3 PART III: TOWARDS SUCCESSFUL OPEN SOURCE PROJECT EVALUATION
	3.1 Introduction to evaluation of OSS projects from business perspective
	3.2 Different evaluation tools for OSS projects
	3.2.1 OPTAROS’ Model
	3.2.2 Open Source Maturity Model (OSMM)
	3.2.3 Qualification and Selection of Open Source Software (QSOS)
	3.2.4 Business Readiness Rating (BRR)
	3.2.5 Comparison and conclusion of the selected models

	3.3 Empirical test: evaluating Gnome with BRR model
	3.3.1 Choosing an example software
	3.3.2 Applying Business Readiness Rating

	3.4 Lessons learnt

	4 PART IV: CONCLUSIONS
	4.1 Management guidelines for different OSS user types
	4.2 Evaluation of the results and insights for further OSS research

	REFERENCES
	APPENDIX 1: Open Source Business Reflections
	APPENDIX 2: Introduction to License Checker
	APPENDIX 3: Value network analysis of Debian and Eclipse
	APPENDIX 4: OSSI research in a nutshell
	Sisasivut_1_2_RR38.pdf
	Nina Helander, Timo Aaltonen, Teemu Mikkonen, Ville Oksanen,
	Mikko Puhakka, Marko Seppänen, Tere Vadén, Niklas Vainio

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

